
JOURNAL OF ALGORITHMS 13, 546-563 (1992)

A Polynomial Algorithm for Minimal Interval
Representation*

ANAT FISCHER

The Technion, Israel

ITZHAK GILBOA

Northwestern University, Evanston, Illinois 60208

AND

MOSHE SHPITALNI

The Technion, Israel and
University of California, Santa Barbara, California 93106

Received June 29, 1988; revised August 1991

The following problem arises in the context of object representation: given two
endpoints of an interval in a Gray code table, find a Boolean function in DNF that
represents this interval, with as few prime implicants as possible. This paper shows
that there is a unique minimal representation and presents a polynomial algorithm
that finds it. 0 1992 Academic Press, Inc.

1. INTRODUCTION

A three-dimensional object has many possible representations inside a
computer. Specifically, constructive solid geometry, boundary representa-
tion, and volumetric approximation techniques are commonly used to
represent objects in solid geometric modeling (see [4]). Among the volu-
metric schemes are the octree [3] and the more recently developed
switching-function representation [6] in which the object is modeled as
occupying precisely those points for which the switching function value

*We are very grateful to three anonymous referees for many comments and references. We
are especially indebted to one of them whose report was more than twice as long as the
original paper and provided numerous stylistic and a few mathematical corrections.

546
0196-6774/92 $5.00
Copyright Q 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

MINIMAL INTERVAL REPRESENTATION 547

is 1. Both schemes are based upon cell decomposition and approximating
objects to a desired resolution. Consequently, they both share many
properties and yet each of them has its own advantages and drawbacks.
One of the main drawbacks of the octree scheme is its exponential space
complexity. By contrast, this paper is concerned with a polynomial-time
algorithm to generate the representation of an object by a switching-func-
tion, where the space is modeled as a Gray-code table (as in [6]). The
minimal representation of an object via a switching function entails the
generation of a minimal set of prime implicants which covers the object.
The generation of such a set is known to be NP-complete in general (see
[l, 51). However, it will be shown that for contiguous segments, which
represent the practical cases of connected objects, the minimal set of
prime implicants is unique and can be generated in polynomial time.

2. THE MAIN RESULT

The following definitions are standard ones (see, for example, [2]) and
are given for the sake of completeness and convenience of notation.

A switching function of n variables is a function f: {O, 1)” -+ (0, 1). An
implicant of n variables is a function P: (1,2,. . . , n) + (0, 1, d) (where d
stands for “don’t care”). To each implicant of n variables P we attach a
switching function of n variables P” defined as follows: &x1, . . . , x,J = 1
iff for all 1 I i < n one of the three conditions holds: (i) P(i) = d; (ii)
P(i) = 1 and xi = 1; (iii) P(i) = 0 and xi = 0. If P(x,, . . . ,x,,) = 1, then
P is said to couer the point x = (x,, . . . , x,).

In the sequel we may refer to “an implicant of xi,. . . , xi”, which will be
a function from 11,. . . , i) to (0, 1, d). However, it will be convenient to
abuse notation and refer to such an implicant also as an implicant of any
superset of {x1,. . . , xi), where the value of each of the other variables is
assumed to be “d.”

For each switching function f we consider the set {x = (x1,. . . , x,>lf(x>
= 1). Since no confusion is likely to arise, we will denote this set by f as
well.

An implicant P is an implicant of the function f if P c f. It is a prime
imp&ant of f if there is no other implicant P’ such that @ c Pf cf.

A code table, or simple a table, T, of size n is a permutation of all 2”
Boolean vectors of length It. Formally, T is a bijection from {k 10 I k I
2” - 1) onto (XIX: {l,. . . , n) + (0,l)). Thus, T(k) is a vector for 0 I k I
2” - 1, and for all 1 s j s n, T(k)(j) E (0,l). When no confusion is likely
to result, we will allow ourselves to use T(k) and k interchangeably.

A table T is said to have the distance-l property if whenever k - 1 = 1
(mod 2’9, T(k) and T(l) differ by one bit exactly.

548 FISCHER, GILBOA, AND SHPITALNI

The Gray code table of size n, GT,, is defined inductively as

(1) For n = 1, GT,(O)(l) = 0 and GT,(l)(l) = 1.
(2) For n > 1, GT, is obtained from GT,-, as follows: write each

row of GT,-, twice, and fill out the nth bit by repeating the sequence
0110. Formally, for 0 I k I 2”-2 - 1 and j < n,

Duplicate:
GT,(4kX j) = GT,- ,(2kX j)
GT,(4k + l)(j> = GT,-,(2kXj)
GTJ4k + 2)(j) = GT,-,(2k + lXj>
GT,(4k + 3Xj> = GT,-,(2k + l)(j)
and Pad:
GT,(4kXn) = 0
GT,(4k + 1Xn) = 1
GT,(4k + 2Xn> = 1
GT,(4k + 3)(n) = 0.

For convenience, we will also refer to GT, as the table containing a
single empty vector. It is both well known and easy to prove that Gray
code tables have the distance-l property.

A set of implicants (P,}F= 1 represents a function f if f = Cf= ,pi. It forms
a prime implicant representation of f if each Pi is a prime implicant of f.
It is a minimal prime implicant representation if it is minimal w.r.t. (with
respect to) the number k of prime implicants.

This definition of “minimal@” is weaker than the usual ones (see, for
instance, [2]). However, we will prove that if f is a contiguous interval in a
Gray code table, then it has a unisue minimal representation according to
this definition. Hence, this representation is also minimal with respect to
any stronger criterion,

We may now formally define the problem addressed in this paper:

Minimal interval representation. Given two integers, 1 and m, such that
0 I 1 _< m, find a minimal prime-implicant representation of the switch-
ing-function f defined by the interval [I, m] in the Gray code table of size
n = rls(m + 1)‘; that is, f(x) = 1 iff 1 I GT,-l(x) I m.

THEOREM. There exists a polynomial-time algorithm which solves the
problem of minimal interval representation.

3. PROOF

We begin with a verbal description of the main idea, followed by an
example. Only then do we turn to the formal description of the algorithm
and the proofs of its correctness and time complexity.

MINIMAL INTERVAL REPRESENTATION 549

3.1. Description of the Algorithm

The main idea of the algorithm is as follows: given the interval [1, m],
first consider the last variable, x,. It may be the case that its value can be
flipped in both GT,(l) and GT,(m) without leaving the interval [I, m]. In
this case there is no need to have X, involved in any prime implicant, the
last bit may be ignored and we have to consider a new problem in GT, _ 1.

Suppose that one of (GT,(l), GT,(m)} (or both) cannot have its nth bit
flipped without leaving the interval [I, m]. Such a point will be referred to
as an “edge point.” Suppose GT,(l) is such. In this case every prime
implicant representation has to have at least one prime implicant with a
specific value (different than “&‘) for x,, in order to cover 1 but not the
adjacent point, 1 - 1. It will turn out to be the case that there is a maximal
such prime implicant (w.r.t. set inclusion) and it is obtained by checking
which bits in GT,(l) (alternatively, in GTJmN may be separately flipped
without leaving [I, m] and setting all of them to “d.”

After writing down the prime implicants obtained by this procedure we
may again ignore the last bit and continue as before. However, one
problem remains: if X,‘S value at GT,(l) was 1, say, and at GT,(m) it was
0, a prime implicant with x, = 1 and one with X, = 0 may jointly cover
some points in GT,- 1. Hence, we have to check whether such prime
implicants may be “reduced” to implicants involving only xi,. , . , x,-~.

The algorithm continues in this way, with only edge points of the
interval being checked for possible inclusion in the union of already-
obtained prime implicants, since only edge points may trigger the intro-
duction of new prime implicants to the representation. This algorithm is
proven in Subsection 3.4 to be correct. Subsection 3.5 shows that it is of
time complexity 0(n3).

3.2. An Example

Suppose we are given 1 = 3, m = 14; hence n = 4. The table and the
interval are presented in Fig. 1.

Here both 1 and m are edge points, hence they both require implicants
involving xq: if 1 = 3 is covered by an implicant P with P(4) = d, P will
also cover the point 1 - 1 = 2; similarly, if m = 14 will be covered by such
a P, P will also cover m + 1 = 15.

Let us start with the implicant P that will cover 1. Obviously, P(4) = 0.
Now we have to check for each of the bits x1 - xj separately whether it
can be flipped without leaving [3, 141. Flipping bits 1, 2, and 3 will yield
points 12, 4, and 0, respectively. Since 4,12 E 13,141, we conclude that we
must define P(1) = P(2) = d; P(3) = 1. That is, the implicant P is x,3:,
(where the upper bar stands for negation). Note that this implicant covers
the points 3, 4, 11, and 12. While we specifically checked only the points

550 FISCHER, GILBOA, AND SHPITALNI

0 0 0 0 0
1 0 0 0 1
2 0 0 1 1

3 0 0 1 0 Q=3

4 0 1 1 0

5 0 1 1 1
6 0 1 0 1
7 0 1 0 0
8 1 I 0 0
9 I 1 0 1
10 1 1 1 1

11 1 1 1 O.
12 1 0 1 0
13 1 0 1 1
14 1 0 0 1 m = 14

15 1 0 0 0

FIGURE 1.

obtained by flipping one bit-4 and 12-the implicant also covers those
obtained by flipping several bits- in this case, 11-but, fortunately, they
end up lying inside the interval. (We will later prove that this is a rule
rather than coincidence.)

Similarly, we compute the implicant Q that will cover m = 14. Flipping
bits 1, 2, and 3 yields the points 1, 9, and 13, respectively. The last two are
in [3,14]. Hence, we define Q(1) = 1, Q(2) = Q(3) = d, and Q(4) = 1;
that is, Q is the implicant x1x4. This implicant covers the points 9, 10, 13,
and 14. The point 10 is obtained by flipping several (two) bits, and lies
inside [3,14]. The points already covered are shown in Fig. 2.

When reducing the table to size i = 3, we surely want to exclude the
two edge points already covered from the updated interval. (For instance,
covering the point 001 in CT, would also mean covering 0011 in GT,.)
Dropping the edge points, ignoring the fourth bit and eliminating redun-
dant rows, we obtain the new interval in GT,, presented in Fig. 3.

Note that both points 5 and 6 are already jointly covered by the
implicants x3Z4 and x1x4. Yet, we do not drop these points. During the
execution of the algorithm it is more accurate to think of the interval [I, m]
as the maximal range that may be covered by the prime implicants, not as
the (precise) range that has to be covered. Note that if the original
interval, [I, ml, is not the whole table (i.e., if I > 0 or m < 2” - l), every

MINIMAL INTERVAL REPRESENTATION 551

0 0 0 0 0
1 0 0 0 1
2 0 0 3 1

3* 0 0 1 0 L=3
4* 0 1 1 0
5 0 1 1 3
6 0 1 0 1

7 0 1 0 0
6 1 1 0 0
9* 1 1 0 1

10: 1 1 1 1
11* 1 1 1 0
12* 1 0 1 0
13* 1 0 1 1
14* 1 0 0 1 m = 14

15 1 0 0 0

* = x3x4 + x1x4.

FIGURE 2.

x1 x2 x3

0 0 0 0
1 0 0 1 2

2 0 1 1 %=2
3 0 1 0

4 1 1 0
5 1 1 1
6 1 0 1 m=6

I 1 0 0

FIGURE 3.

point in it will eventually be included in an edge point of the updated
interval in GT, for some i I n.

However, to guarantee the minimality of the representation obtained we
have to consider only edge points that are not already covered. Consider
Fig. 3 again. Here, 1 = 2 is not an edge point (flipping the third bit yields
the point 3 E [2,6]); however, m = 6 is an edge point (flipping its third bit

552 FISCHER, GILBOA, AND SHPITALNI

x1 x2

0 0 0

1 0 1 !I=1
2 1 1 m 2 =

3 1 0

FIGURE 4.

yields 7 @ [2,6]). Yet 6 is already covered by ~~2, + x,x4, so we disregard
it.

In order to know whether edge points in table Gq are already covered,
the algorithm will update a list of temporary implicants. Thus, x3X4 and
x,x4 will be introduced into the list of the first stage, say, PTEMP[4], and
before analyzing GT, we will add to PTEMP[3] the implicant x1x3, as
every point (in GTJ covered by it is already covered by (x,X, + x,x,).

Thus, in GT, there is no need for additional implicants. The edge point
m = 6 may be ignored and we are left with the interval in GT, shown in
Fig. 4.

There is only one temporary implicant in PTEMP[3], which is x,x3.
Hence, all the implicants in PTEMP[3], and hence all the prime implicants
gathered so far, (x,E, + xix& do not cover any points in GT,. We may
therefore proceed as if this were the original table. Here, both 1 = 1 and
m = 2 are edge points, and both induce the same prime implicant, xz.
This prime implicant is added to the list, and obviously we are left with an
empty interval (this will be detected by the algorithm when, after the
control variables are updated, we have 1 > m). Therefore, the algorithm
terminates with the representation

x3x‘$ + x,x4 + x2.

Following the steps of the algorithm, it is relatively easy, yet insightful, to
convince oneself that this representation is indeed minimal.

3.3. A Formal Description of the Algorithm

Data Structure. The following global variables will greatly simplify the
exposition:

(1) n, 1, m, i, j.
(2) PI, a set of implicants of n variables (those maximal implicants

which have to be included in the representation).

MlNIMAL INTERVAL REPRESENTATION 553

(3) For each 1 I i I n, PTEMP[i], a set of implicants of i variables
(to be thought of as a function of the first i variables x1, x2,. . . , xi>.
(These represent the implicants in Gq which are obtained by unions of
the implicants in G&+,.1

DEFINITIONS. (1) A vector x E (0, 1)’ (i I n) will also be called a
point.

(2) GTJk) (or, simply, k) is included in the interval [1, m] if 1 5 k I
m. It is an endpoint if k = I or k = m; I(m) will be also called the upper
(lower) endpoint of [I, ml.

(3) A point k is an edge point w.r.t. the interval [l, m] if k is an
endpoint of [1, ml, and the point x, defined by flipping its ith bit, that is,

4.0 = GT(k)(.i), j<i

x(i) = 1 - GK(k)(i),

is not included in the interval, namely, GTi- ‘(x) (which equals k + 1 or
k - 1) is smaller than I or greater than m. We will also use the terms
“upper edge point” (should 1 be an edge point) and “lower edge point”
(for m).

(4) For i, k, I, and m, such that 0 I 1 I k 2 m I 2’ - 1, define a set
Ak, i, 1, m) to be

{l I j 2 iJx is in the [I, ml interval (i.e., GT;‘(x) E [l, ml>, where x is
obtained from GTJk) by changing the value of its jth bit: x(s) = GTi(kXs),
for s # j, and x(j) = 1 - Gq(k)(j)).

PROCEDURES.

(1) Procedure ADD(k). Add to the set PTEMP[il the prime implicant
(of i variables) P defined as follows:

if j EA(k,i,l,m)

otherwise

for 1 I j < i. Also, add to the set PI the corresponding prime implicant
(of n variables) P’ defined by

P(j), P’(j) = d L
lljli,
i<j<n.

for 1 Ijln.

(2) Procedure AUGMENT - PTEMP(i). For every two implicants,
P, and P,, in PTEMP[i] with P,(i) = 1 and P,(i) = 0, perform the
following: first check whether for each j < i it is true that P,(j) = P2(j),
P,(j) = d, or Pz(j) = d (or possibly all of the above). If so, add to

554 FISCHER, GILBOA, AND SHPITALNI

PTEMP[1’ - l] an implicant (of i - 1 variables) p defined by

p(j) = P,(j), if P,(j) = Pz(j) or P2(j) = d;

Rj> = PAj), otherwise.

For every implicant P in PTEMP[1’] with P(i) = d, and which is not
already covered by any (single) implicant in PTEMP[1’ - 11, introduce into
PTEMP[1’ - l] the corresponding implicant p of (i - 1) variables, that is,
F such that p(j) = P(j) for j < i.

THE ALGORITHM.

Input : integers 1 and m such that 0 _< 1 I m.
Output: the set PI of prime implicants.
Initialization :

Compute n = ‘lg(m + 1)‘.
If I = 0 and m = 2” - 1, define the trivial implicant P by P(j) = d
for 1 I j I: n, let PI = {P), and stop. Otherwise, continue.
Let i = n
Let PI and PTEMP[j] (for all 1 I j _< n> be empty.

WHILE i 2 1 and 1 I m do:
If 1 is an edge point of the interval [I, ml, and if 1 is not covered by
any of the elements of PTEMP[1’], then perform ADD(l).
Repeat the previous step for m (instead of I).
Perform AUGMENT - PTEMP(I’).
Update control variables:

Set: i = i - 1;
I = .(I + 1)/2,
m = .(rn - 1)/2,.

3.4. Proof of Correctness

ADDITIONAL DEFINITIONS. To facilitate the discussion, we will define
two functions. The first, REDUCE, reduces a table of a given size i to a
table of size i - 1. The second one, EXPAND, does the opposite. How-
ever, they are not entirely symmetric, since the reduction may be accom-
plished by “deleting” any chosen bit, while expansion is always performed
by adding a leading bit to a given table.

FUNCTION REDUCECT, i, j, s>.

Input: T, a table of size i, for i r 3
j, an integer 1 5 j I i
s, a bit value: s E {O, 1).

MINIMAL INTERVAL REPRESENTATION 55.5

Output: T’, a table of size i - 1.
Computation: Let (k,)FLi-’ be the set of indices satisfying:

(i) T(k,Xj) = s, for r I 2’-’ - 1
(ii> k,+l > k,, for r < 2’-’ - 1.
For 0 5 r _< 2’-’ - 1, define

(i) T’(rXl) = T(k,Xl), if 0 I 1 < j
(ii) T’(rXl) = T(k,Xl + l), if j I 1 < i.

FUNCTION EXPAND(T, i, s).
Input: T, a table of size i, for i 2 0

s, a bit value: s E (0, l}.
Output: T’, a table of size i + 1.
Computation: For 0 I r I 2’ - 1 define:

T’(r)(l) = s
T’(rXj) = T(rXj - 1) for 2 I j I i + 1.

For 2’ I r I 2’+’ - 1, define:
T’(rX1) = 1 - s
T’(rX j) = T(2’+’ - 1 - r>(j - 1)
for2lj<i+l.

(The first half of T’ is the concatenation of the leading
bit s to T. The second half is a mirror image of T with
leading bit (1 - s).)

It is easy to see that both functions will, in fact, produce tables. (That is
to say, if T is a permutation of all bit vectors, then T’ will also be a
permutation of all bit vectors of the corresponding size.)

We may now turn to the proof. Let us begin with some simple observa-
tions which will be given without proofs.

3.4.1. Observation. REDUCE(EXPAND(T, i, s), i + 1, 1, s) = T.

3.4.2. Observation. GT,,, = EXPAND(GT,, i, 0).

3.4.3. Observation. GTi- 1 = REDUCE(GT,, i, i, 0) = REDUCE
(GTi, i, i, 1).

(In fact, Observation 3.4.3 is a restatement of the definition of Gray
code tables. Observation 3.4.2 may be used as an alternative definition.)

Let us define a semi-Gray code table (or a “semi-Gray code”) of size rr
to be:

(i) the table containing the empty vector if IZ = 0, or
(ii) the table computed by EXPAND(T, n - 1,0) or EXPAND(T,

n - 1,l) for some semi-Gray code table T of size n - 1.

By Observation 3.4.2, Gray code tables may be obtained from the empty
table by a sequence of EXPAND(. , * , 0) operations. Semi-Gray codes are

556 FISCHER, GILBOA, AND SHPITALNI

those tables obtained by a similar process, when the leading bit (in the first
half of the table) at each stage may be either 0 or 1. While there exists a
unique Gray code table of size II, there are 2” semi-Gray code tables of
the same size. In fact, for each 0 I k I 2” - 1 there is a one-to-one
correspondence between all 2” semi-Gray codes and all 2” possible n-bit
vectors which may be the kth point in the table, i.e., for any choice of a
vector x for any location 0 I k I 2” - 1 in the table, there exists a unique
semi-Gray code T for which T(k) = x. Next we have:

3.4.4. LEMMA. Let T be a semi-Gray code table of size i 2 1. Then for
any j, s such that 0 I j I i and s E (0, 11, REDUCE(t, i, j, s) is also a
semi-Gray code table.

Proof. The proof is by induction on i. For i = 1, it is obviously true.
Assume then that i > 1. If j = 1, the definition of semi-Gray code tables
is all that is required for a proof. Let us therefore consider the case j > 1.

Consider T’ = REDUCECT, i, 1, T(l)(l)) (that is, the upper half of T
with its first bit deleted). T’ is a semi-Gray code table by definition. Hence
the induction assumption implies that T” = REDUCECT’, i - 1, j - 1, s)
is also a semi-Gray code table. It only remains to note that EXPANDV”,
i - 2, T(l)(l)) = REDUCECT, i, j, s). 0

3.4.5. LEMMA. Let T be a semi-Gray code table of size i. Assume that
. .

Jl,Jz,. ‘. 3 j,satisfy11jl<j2< ‘.* < j, I i and that sI E (0,l) for 1 I
1 _< k. Define T, = Tand T, = REDUCE(T[-,, i - 1 + 1, jI - 1 + 1, sI) for
1 5 1 5 k. Then Tk is a semi-Gray code table.

Proof Follows from the previous lemma. 0

3.4.6. LEMMA. If Tis a semi-Gray code table, then it has the d&ance - 1
properly.

Proof. By induction using the definition of semi-Gray code tables. q

3.4.7. THEOREM. Let [1, m] be an interval in a Gray code table of size i.
Let 9 denote the set of all implicants P that cover l(m) and are included in
[I, ml; that is,

9= {PIP(l) = 1, and 1 -< k s m whenever P(Glj(k)) = l}
(or 9= {PIP(m) = 1, and 1 I: k 5 m whenever P(GT(k)) = 1) for m).

Then 9’ has a maximal element w.r.t. inclusion; that is, there exists Q E 9
such that for all P E 9’ we have >T;:(k)) = 1 whenever &G?(k)) = 1.

MINIMAL INTERVAL REPRESENTATION 557

Proof. Suppose [I, ml is given. We will only provide the proof for I, as
it is symmetric for m. Define

d,
‘(j) = GI&(l)(j), i

if j EA(l,i,l,m)

otherwise

for 1 5 j 5: i.
Note that Q is the implicant defined by Add(l) in the algorithm.
Two claims complete the proof:

CLAIM 1. If P E 9 then $ G Q.

Proof. In view of the definition of A(1, i, 1, m), every xi (1 I j I i)
whose value can be switched to “d” without covering points outside [1, m]
has indeed a “d” value in Q. •I

CLAIM 2. Q is included in [I, m]; that is, for all 0 2 k I 2’ - 1,
(Z(GTJk)) = 1 implies 1 I k I m.

Proof. Assume the contrary. Hence, the set K = {kI&G&(k)) = 1,
k < 1 or k > m] is nonempty. Let k be the element of K that maximizes
(k - m> mod 2’, that is, the index of the point closest to 1 when distance is
measured along the unidirectional path m, m + 1, m + 2, . . . ,
2’ - l,O, 1,. . .) 1 - 1,l.

Let us now denote by D(k, 0 the set (1 I j _< iIG?;:(kXj) # GTi(lXj)).
By the definition of Q, D(k, 1) G A(1, i, 1, m). We claim that ID(k, 111 2 2:
the possibility ID(k, 01 = 0 is, of course, ruled out since k # 1. However,
ID(k, 01 = 1 is also impossible, since it contradicts the definition of
A(I, i,l, m). Thus, ID(k, 01 2 2 is established.

To focus on the different bits of GTJk) and GTJl), we will apply the
REDUCE function to the table, and reduce all of the bits in which they
are equal. Suppose, then, that those bit positions are numbered . . J1, J2,. . . , j,, where j, < j, < * . * < j,. Define T, = GT, and, for 1 I s <
r, let T, = REDUCE(T,-,, i - s + 1, j, - s + 1, GTi(lXj,)). Let US de-
note the elements of D(k, 1) by d,, d,, . . . , d,, where d, < d, < *. . < d,
(Note. t + r = i). We may now consider the points in T, which correspond
to GT,(l) and GTi(k): let x(s) = GTJlXd,) and y(s) = GTJkXd,), for
1 I s I t, and define 1’ = T,-‘(x), k’ = T;‘(y). Note that by the above
construction, x(s) # y(s) for all 1 < s I t.

We now claim that k’ = 1’ - 1 (mod 2’). To prove this it suffices to note
that had there been another vector in T, between x and y, k could not
have maximized (k - m> (mod 2’). More formally, if z satisfies T;‘(y) <
T; ‘(z) < T; ‘(x or T;‘(z) < T;‘(x) < T;‘(y) or T;‘(x) < T;‘(y) <)
T,-‘(z), one may define a bit-vector w of length i by w(d,) = z(s) for
1 I s I t, and w(j) = GT#Xj) = GT(kXj) for j @ D(k, II, and then
GT-l(w) - m will exceed k - m (mod2’).

5.58 FISCHER, GILBOA, AND SHPITALNI

So x and y are adjacent points in T, that differ in every bit position. But
t = ID(k, 111 2 2 and, hence, T, does not satisfy the distance-l property.
But this contradicts either Lemma 3.4.5 or 3.4.6. We therefore conclude
that Claim 2 and the theorem are proved. 0

This theorem implies that the algorithm computes a prime implicant of
the interval [Z, m] in each stage. It is not difficult to see (as we will) that all
of these prime implicants (computed at different stages) constitute a prime
implicant representation of the original interval. However, we also need to
show its minimality. To this end, we require several additional definitions.

For a subset S z (0,. . . , 2” - 1) in a Gray code table and an integer
1 I i < IZ, define the reduction ofS to GI;: as Sl; = {x: 11,. . . , i] + IO, l]].
For everyy: Ii + l,..., n} --f (0, l), GTnp’(x U y) E S}, where x U y is the
union of x and y (considered as sets), namely, the function on (1, . . . , n}
defined by

XUY(j> =
i
x(j), lljli;

y(j), i<j_<n.

Denote by Z the input interval [Z, m] in CT,.

3.4.8. Observation. After every update of the control variables in the
algorithm, [I, m] is Zli, that is; the reduction of the original interval Z to
G&

3.4.9. Observation. After every update of the control variables in the
algorithm, the subsets of G7;:

Pi= UPC
()I PEPI ,

and

satisfy

zi = Zli

pi = PT, C Zli.

This observation simply states that the sets PTEMP[i] represent exactly
those points in Gq which are already covered by prime implicants in PZ,
and that these do not “overflow” outside of the interval we are trying to
represent.

MINIMAL INTERVAL REPRESENTATION 559

For an implicant P, define the order of P to be the maximal index of a
“relevant” variable, that is, the index j E {O, . . . , n} for which: (i) P(k) = d
for all k > j and (ii) j = 0 or P(j) # d.

3.4.10. LEMMA. Suppose that P is a prime implicant of Z = [I, m] of
order j > 0. Then P covers an edge point of Zlj in GTj.

Proof. Otherwise setting P(j) = d would provide a new implicant
which is still included in Zlj (in GTj), hence in Z (in GT,), and P cannot
be a prime implicant. q

We may now prove:

3.4.11. THEOREM. For any interval Z = [l, ml in GT, there is a unique
minimal prime implicant representation given by the set PI computed by the
algorithm.

Note that in the provision of the theorem, “minimal” means “minimal
with respect to the number of terms”; however, from the proof it will be
obvious that it is enough to require minimality with respect to set inclu-
sion. On the other hand, uniqueness will imply that the set PI is also
minimal with respect to the number of factors in each term.

Proof Existence of minimal representations is obvious. It therefore
suffices to show that any minimal set of prime implicants 9 that repre-
sents Z is equal to PI.

Given such a set 9, define for 0 I i I n,

and

Pi = (P E PIP of order i}

PZi = (P E PZ(P of order i} .

We will prove that Pi = PZi inductively. Let us begin with i = n. By
Lemma 3.4.10, every element of both 9, and PZ,, covers an edge point of
I. On the other hand, every edge point has to be covered by a prime
implicant in PZ,, and by one in gn. Theorem 3.4.7 implies that these prime
implicants are equal, and it follows that PZ,, = Pn. (Note that the above
does not imply a one-to-one correspondence between edge points of Z and
9n (or PZ,J. It may well be the case that Z has two edge points covered by
the same prime implicant; but this prime implicant still has to be con-
tained in both 9n and PI,, which will not include any other prime
implicants.)

Let us now assume that Pj = PZj holds for j > i. As for the case i = n,
it is true that

0 I I~iI, IPZil ~ 2,

560 FISCHER, GILBOA, AND SHPITALNI

and that each element of Sq: and of PZi has to cover an edge point of Z/i
in Gq. Moreover, PZi E gi holds: given Q E PI,, Q covers an edge point
not covered by any element of PTEMP[1’]. By Observation 3.4.9, this point
is not covered by U cp E p,,, j, ij Zs either. The induction hypothesis also
implies that it is not covered by lJ tp E y,, j, i1P. Since an edge point cannot
be covered by P E gj for j < i, there IS P E gi covering the edge point,
and by Theorem 3.4.7 it equals Q.

It remains to prove that the converse also holds, i.e., that pi E PZj.
Assume the contrary, namely, that Q E @i \ PZi. Let x: (0,. . . , i) * IO, 11
be an edge point of Zli covered by Q. If there were a P E PZi covering this
point, P = Q would follow. Hence, no such P exists. In view of the
algorithm, this is possible only if x is covered by

u p
(PE PTEMP[i])

and, by 3.4.9, also by

In particular, for every y: {i + 1, . . . , n) + (0, 11 there exists PY E U j, ; PZj
covering x U y. (Again, this correspondence does not have to be l-l.)

We wish to show that

GE U Pyc u P= u F,
(y:(i+l,...,nJ-,(O,l)) (PEPl,, j>i) {Peg,, j>i)

which would imply that 9 is not minimal with respect to set inclusion, let
alone with respect to the number of implicants.

Assume, then, that Q c lJ YpY does not hold. Let z in GT, be such that
Q(z) = 1 but P,(z) = 0 for all y. Choose y such that y(j) = z(j) for j > i.
p,,(z) = 0 can hold only if there is an integer k I i such that P,,(k) f d
and P,(k) # z(k).

Recall that x: (0,. . . , i) + (0, 1) is the edge point of Zli covered by Q.
W.1.o.g. assume that x = G?(f), that is, that x is an upper edge point.
Hence, by the definition of P,,,

&(xuy) = 1 =F,(xuy).

Knowing that P,,(k) # d, we obtain P,(k) = x(k) (= (x U y)(k)). How-
ever, Q(z) = 1 and Q(x U y) = 1 while z(k) # (x U y)(k); hence Q(k) = d.
This implies that k E A(Z, i, 1, m), namely, that changing the kth bit of x
generates a point x’ in the interval ZJi. But this further implies that 1.

MINIMAL INTERVAL REPRESENTATION 561

changing the kth bit of x u y generates a point x’ u y within the original
interval I. By the construction of prime implicants, P,(k) = d must hold, a
contradiction. This completes the proof of Theorem 3.4.11. q

3.5. Proof of Time Complexity

We first note that n is linear in the input size (lg m), hence it suffices to
show that the algorithm is polynomial in n. We show that the algorithm is
of time complexity O(n3). Observe the following:

(1) Computing GT, and GT,-’ (i.e., computing a point in a Gray code
table given its number, or the other way around), requires O(i) operations.

(2) Computing A(k, i, 1, m) requires O(i’) operations.

We now show that at most one implicant generated by elements of
PTEMP[i] is added to PTEMP[i - 11, which also means that the size
of PTEMP[i] cannot exceed 3. This will imply that the construction of all
PTEMP[i], 1 I i s n, throughout the algorithm does not require more
than O(n’> operations, and the O(n3) stated bound follows.

In the following, “stage j” will refer to the point in the algorithm’s
execution following the “control variables update” at which i is set to j
(“stage n” will stand for the initial stage). Let lj and mj denote the values
of 1 and m at state j.

3.5.1. LEMMA. Suppose that at stages j’ and j (with j’ < j>, ljJ and lj are
upper edge points. Then

Gq(lj)(k) = G7jt(lj,)(k) fork <j.

Furthermore, let P be the maximal prime implicant of (x,, . . . , xi> covering
lj, and let P’ be the corresponding one for lj,. Then for k < j’, if P(k) = d,
then P’(k) = d and, moreover, P’(k) # d implies P(k) = P’(k).

Proof. Note that the “moreover” part is a direct implication of the
other two facts stated in the lemma. (Namely, if P’(k) # d, then P(k) # d
and, by equality of the Gray code table entry, P(k) = P’(k) follows.)

It suffices to prove the lemma under the assumption that there are no
upper edge points in any stage s, j’ < s < j. (For, if there are such, one
may proceed inductively.) Consider the point Gq(l?). It corresponds to
some interval in Gq.. Let r be the uppermost point in this interval. Note
that r = lj + 1.

Since lj, is an upper edge point, flipping its j’th bit would result in a
point outside [l,,, mj,] in G?;.,. This means that

Gq(l,)(j’) f Gq(r)(j’).

562 FISCHER, GILBOA, AND SHPITALNI

By the distance-l property,

Gq(Zj)(k) = Gq(r)(k) for k # j’,

and, in particular, for k < j’ we obtain

G1;(Zj)(k) = Gq,(l/)(k).

Next consider the prime implicants P and P’. By the fact mentioned
above and the symmetry of the Gray code table, it is obvious that the index
r of the point (in Gq) generated from lj by flipping its kth bit (k < j’) is
larger than any index s corresponding to a point in (the block induced by)
GTJlj,). If r is in [f,, mj], so is any such s, which means that when the kth
bit is flipped in lit, m the table Gq,, it does not generate a point outside of
[ii,, mj,]. Hence, P(k) = d implies P’(k) = d. 0

A corresponding lemma can be proven and will be assumed, for lower
edge points.

3.5.2. LEMMA. The number of prime implicants generated from elements
of PTEMP[i] and added to PTEMP[i - I] is at most 1.

Proof The proof is by induction starting with i = n. For this case the
claim is trivially correct. Consider some i < n, and assume correctness for
j > i. Let us distinguish between two cases:

(1)]PTEMP[i]] I 2, in which case the lemma follows from the
construction of PTEMP[i - 11.

(2) IPTEMP[i]I = 3.

First suppose that one of the elements of PTEMP[i], say, P, satisfies
P(i) = d (which can only occur if it was generated in previous stages).
Then one of the two conditions must hold: (i) the other two implicants,
say, P, and P2, satisfy P,(i) = P,(i), in which case only P is added to
PTEMP[i - 11, or (ii) P,(i) # P,(i) (and both differ from d by the
construction of PTEMP[i] from edge points). In this case, P, and Pz
generate a prime implicant, P, which is added to PTEMP[i - 11, but by
Lemma 3.5.1, P will not be added to PTEMP[i - l] as it is covered by p.

Next assume that none of the three implicants has a “d” as its last
entry. W.l.o.g., suppose {P,, P2, PJ = PTEMP[i] and P,(i) = P,(i) = 1,
P,(i) = 0. If P, was added to PTEMP[i] by AUGMENT-PTEMP(i + l),
then a similar argument applies-the remaining two implicants P2 and P3
correspond to edge points and they generate an implicant F which covers
P,. Of course, the same holds if Pz was added from PTEMP[i + 11. So we
are left with the case where PI and Pz cover edge points, and P3 was
added to PTEMP[il by AUGMENT-PTEMP(i + 1).

MINIMAL INTERVAL REPRESENTATION 563

But in this case, if a prime implicant, FIL is generated by
AUGMENT-PTEMP for the pair P, and Ps, and P, is generated by it
for the pair P2 and P,, F1 and & have to be equal: for every j < i, if
P,(j) = d then P3 was generated by some lower and upper edge points
with prime implicants P4 and Ps satisfying P,(j) = d and P,(j) = d.
Lemma 3.5.1 implies that PI(j) = d and P,(j) = d hold as well, whence
Ft<j> = d and p2(j) = d.

If, however, P&j) # d, then P,(j) = P&j> = p,(j), which completes the
proof of Lemma 35.2. 0

We conclude that the algorithm is of time complexity O(n3). Note that
the only step which cannot be performed in O(n*> operations is the
computation of A(k, i, 1, m).

Remark. The facts that IZ can be computed (rather than be given as
input) and that this is crucial for n to be linear in the input size were
pointed out to us by one of the referees.

REFERENCES

1. J. F. GIMPEL, A method of producing a Boolean function having an arbitrarily prescribed
prime implicant table, IEEE Trans. Electron. Comput. 14 (19651, 485-488.

2. Z. KOHAVI, “Switching and Finite Automata Theory,” McGraw-Hill, New York, 1970.
3. D. .I. MEAGER, “The Octree Encoding for Efficient Solid Modeling,” Ph.D. thesis,

Graduate Faculty of Rensselaer Politechnic Institute, Troy, New York, submitted, 1982.
4. M. E. MORTENSON, “Geometric Modeling,” Wiley, New York, 1985.
5. J. O’ROURKE, Polygon decomposition and switching function minimization, Comput.

Graphics Image Process. 18 (19821, 382-391.
6. M. SHPITALNI, Switching functions and solid geometrical modeler, Proc. IEEE 72, No. 1

(1984), 136-137.

