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The following problem arises in the context of object representation: given two 
endpoints of an interval in a Gray code table, find a Boolean function in DNF that 
represents this interval, with as few prime implicants as possible. This paper shows 
that there is a unique minimal representation and presents a polynomial algorithm 
that finds it. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

A three-dimensional object has many possible representations inside a 
computer. Specifically, constructive solid geometry, boundary representa- 
tion, and volumetric approximation techniques are commonly used to 
represent objects in solid geometric modeling (see [4]). Among the volu- 
metric schemes are the octree [3] and the more recently developed 
switching-function representation [6] in which the object is modeled as 
occupying precisely those points for which the switching function value 
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is 1. Both schemes are based upon cell decomposition and approximating 
objects to a desired resolution. Consequently, they both share many 
properties and yet each of them has its own advantages and drawbacks. 
One of the main drawbacks of the octree scheme is its exponential space 
complexity. By contrast, this paper is concerned with a polynomial-time 
algorithm to generate the representation of an object by a switching-func- 
tion, where the space is modeled as a Gray-code table (as in [6]). The 
minimal representation of an object via a switching function entails the 
generation of a minimal set of prime implicants which covers the object. 
The generation of such a set is known to be NP-complete in general (see 
[l, 51). However, it will be shown that for contiguous segments, which 
represent the practical cases of connected objects, the minimal set of 
prime implicants is unique and can be generated in polynomial time. 

2. THE MAIN RESULT 

The following definitions are standard ones (see, for example, [2]) and 
are given for the sake of completeness and convenience of notation. 

A switching function of n variables is a function f: {O, 1)” -+ (0, 1). An 
implicant of n variables is a function P: (1,2,. . . , n) + (0, 1, d) (where d 
stands for “don’t care”). To each implicant of n variables P we attach a 
switching function of n variables P” defined as follows: &x1, . . . , x,J = 1 
iff for all 1 I i < n one of the three conditions holds: (i) P(i) = d; (ii) 
P(i) = 1 and xi = 1; (iii) P(i) = 0 and xi = 0. If P(x,, . . . ,x,,) = 1, then 
P is said to couer the point x = (x,, . . . , x,). 

In the sequel we may refer to “an implicant of xi,. . . , xi”, which will be 
a function from 11,. . . , i) to (0, 1, d). However, it will be convenient to 
abuse notation and refer to such an implicant also as an implicant of any 
superset of {x1,. . . , xi), where the value of each of the other variables is 
assumed to be “d.” 

For each switching function f we consider the set {x = (x1,. . . , x,>lf(x> 
= 1). Since no confusion is likely to arise, we will denote this set by f as 
well. 

An implicant P is an implicant of the function f if P c f. It is a prime 
imp&ant of f if there is no other implicant P’ such that @ c Pf cf. 

A code table, or simple a table, T, of size n is a permutation of all 2” 
Boolean vectors of length It. Formally, T is a bijection from {k 10 I k I 
2” - 1) onto (XIX: {l,. . . , n) + (0,l)). Thus, T(k) is a vector for 0 I k I 
2” - 1, and for all 1 s j s n, T(k)(j) E (0,l). When no confusion is likely 
to result, we will allow ourselves to use T(k) and k interchangeably. 

A table T is said to have the distance-l property if whenever k - 1 = 1 
(mod 2’9, T(k) and T(l) differ by one bit exactly. 
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The Gray code table of size n, GT,, is defined inductively as 

(1) For n = 1, GT,(O)(l) = 0 and GT,(l)(l) = 1. 
(2) For n > 1, GT, is obtained from GT,-, as follows: write each 

row of GT,-, twice, and fill out the nth bit by repeating the sequence 
0110. Formally, for 0 I k I 2”-2 - 1 and j < n, 

Duplicate: 
GT,(4kX j) = GT,- ,(2kX j) 
GT,(4k + l)( j> = GT,-,(2kXj) 
GTJ4k + 2)(j) = GT,-,(2k + lXj> 
GT,(4k + 3Xj> = GT,-,(2k + l)(j) 
and Pad: 
GT,(4kXn) = 0 
GT,(4k + 1Xn) = 1 
GT,(4k + 2Xn> = 1 
GT,(4k + 3)(n) = 0. 

For convenience, we will also refer to GT, as the table containing a 
single empty vector. It is both well known and easy to prove that Gray 
code tables have the distance-l property. 

A set of implicants (P,}F= 1 represents a function f if f = Cf= ,pi. It forms 
a prime implicant representation of f if each Pi is a prime implicant of f. 
It is a minimal prime implicant representation if it is minimal w.r.t. (with 
respect to) the number k of prime implicants. 

This definition of “minimal@” is weaker than the usual ones (see, for 
instance, [2]). However, we will prove that if f is a contiguous interval in a 
Gray code table, then it has a unisue minimal representation according to 
this definition. Hence, this representation is also minimal with respect to 
any stronger criterion, 

We may now formally define the problem addressed in this paper: 

Minimal interval representation. Given two integers, 1 and m, such that 
0 I 1 _< m, find a minimal prime-implicant representation of the switch- 
ing-function f defined by the interval [I, m] in the Gray code table of size 
n = rls(m + 1)‘; that is, f(x) = 1 iff 1 I GT,-l(x) I m. 

THEOREM. There exists a polynomial-time algorithm which solves the 
problem of minimal interval representation. 

3. PROOF 

We begin with a verbal description of the main idea, followed by an 
example. Only then do we turn to the formal description of the algorithm 
and the proofs of its correctness and time complexity. 
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3.1. Description of the Algorithm 

The main idea of the algorithm is as follows: given the interval [1, m], 
first consider the last variable, x,. It may be the case that its value can be 
flipped in both GT,(l) and GT,(m) without leaving the interval [I, m]. In 
this case there is no need to have X, involved in any prime implicant, the 
last bit may be ignored and we have to consider a new problem in GT, _ 1. 

Suppose that one of (GT,(l), GT,(m)} (or both) cannot have its nth bit 
flipped without leaving the interval [I, m]. Such a point will be referred to 
as an “edge point.” Suppose GT,(l) is such. In this case every prime 
implicant representation has to have at least one prime implicant with a 
specific value (different than “&‘) for x,, in order to cover 1 but not the 
adjacent point, 1 - 1. It will turn out to be the case that there is a maximal 
such prime implicant (w.r.t. set inclusion) and it is obtained by checking 
which bits in GT,(l) (alternatively, in GTJmN may be separately flipped 
without leaving [I, m] and setting all of them to “d.” 

After writing down the prime implicants obtained by this procedure we 
may again ignore the last bit and continue as before. However, one 
problem remains: if X,‘S value at GT,(l) was 1, say, and at GT,(m) it was 
0, a prime implicant with x, = 1 and one with X, = 0 may jointly cover 
some points in GT,- 1. Hence, we have to check whether such prime 
implicants may be “reduced” to implicants involving only xi,. , . , x,-~. 

The algorithm continues in this way, with only edge points of the 
interval being checked for possible inclusion in the union of already- 
obtained prime implicants, since only edge points may trigger the intro- 
duction of new prime implicants to the representation. This algorithm is 
proven in Subsection 3.4 to be correct. Subsection 3.5 shows that it is of 
time complexity 0(n3). 

3.2. An Example 

Suppose we are given 1 = 3, m = 14; hence n = 4. The table and the 
interval are presented in Fig. 1. 

Here both 1 and m are edge points, hence they both require implicants 
involving xq: if 1 = 3 is covered by an implicant P with P(4) = d, P will 
also cover the point 1 - 1 = 2; similarly, if m = 14 will be covered by such 
a P, P will also cover m + 1 = 15. 

Let us start with the implicant P that will cover 1. Obviously, P(4) = 0. 
Now we have to check for each of the bits x1 - xj separately whether it 
can be flipped without leaving [3, 141. Flipping bits 1, 2, and 3 will yield 
points 12, 4, and 0, respectively. Since 4,12 E 13,141, we conclude that we 
must define P(1) = P(2) = d; P(3) = 1. That is, the implicant P is x,3:, 
(where the upper bar stands for negation). Note that this implicant covers 
the points 3, 4, 11, and 12. While we specifically checked only the points 
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0 0 0 0 0 
1 0 0 0 1 
2 0 0 1 1 

3 0 0 1 0 Q=3 

4 0 1 1 0 

5 0 1 1 1 
6 0 1 0 1 
7 0 1 0 0 
8 1 I 0 0 
9 I 1 0 1 
10 1 1 1 1 

11 1 1 1 O. 
12 1 0 1 0 
13 1 0 1 1 
14 1 0 0 1 m = 14 

15 1 0 0 0 

FIGURE 1. 

obtained by flipping one bit-4 and 12-the implicant also covers those 
obtained by flipping several bits- in this case, 11-but, fortunately, they 
end up lying inside the interval. (We will later prove that this is a rule 
rather than coincidence.) 

Similarly, we compute the implicant Q that will cover m = 14. Flipping 
bits 1, 2, and 3 yields the points 1, 9, and 13, respectively. The last two are 
in [3,14]. Hence, we define Q(1) = 1, Q(2) = Q(3) = d, and Q(4) = 1; 
that is, Q is the implicant x1x4. This implicant covers the points 9, 10, 13, 
and 14. The point 10 is obtained by flipping several (two) bits, and lies 
inside [3,14]. The points already covered are shown in Fig. 2. 

When reducing the table to size i = 3, we surely want to exclude the 
two edge points already covered from the updated interval. (For instance, 
covering the point 001 in CT, would also mean covering 0011 in GT,.) 
Dropping the edge points, ignoring the fourth bit and eliminating redun- 
dant rows, we obtain the new interval in GT,, presented in Fig. 3. 

Note that both points 5 and 6 are already jointly covered by the 
implicants x3Z4 and x1x4. Yet, we do not drop these points. During the 
execution of the algorithm it is more accurate to think of the interval [I, m ] 
as the maximal range that may be covered by the prime implicants, not as 
the (precise) range that has to be covered. Note that if the original 
interval, [I, ml, is not the whole table (i.e., if I > 0 or m < 2” - l), every 
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0 0 0 0 0 
1 0 0 0 1 
2 0 0 3 1 

3* 0 0 1 0 L=3 
4* 0 1 1 0 
5 0 1 1 3 
6 0 1 0 1 

7 0 1 0 0 
6 1 1 0 0 
9* 1 1 0 1 

10: 1 1 1 1 
11* 1 1 1 0 
12* 1 0 1 0 
13* 1 0 1 1 
14* 1 0 0 1 m = 14 

15 1 0 0 0 

* = x3x4 + x1x4. 

FIGURE 2. 

x1 x2 x3 

0 0 0 0 
1 0 0 1 2 

2 0 1 1 %=2 
3 0 1 0 

4 1 1 0 
5 1 1 1 
6 1 0 1 m=6 

I 1 0 0 

FIGURE 3. 

point in it will eventually be included in an edge point of the updated 
interval in GT, for some i I n. 

However, to guarantee the minimality of the representation obtained we 
have to consider only edge points that are not already covered. Consider 
Fig. 3 again. Here, 1 = 2 is not an edge point (flipping the third bit yields 
the point 3 E [2,6]); however, m = 6 is an edge point (flipping its third bit 
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x1 x2 

0 0 0 

1 0 1 !I=1 
2 1 1 m 2 = 

3 1 0 

FIGURE 4. 

yields 7 @ [2,6]). Yet 6 is already covered by ~~2, + x,x4, so we disregard 
it. 

In order to know whether edge points in table Gq are already covered, 
the algorithm will update a list of temporary implicants. Thus, x3X4 and 
x,x4 will be introduced into the list of the first stage, say, PTEMP[4], and 
before analyzing GT, we will add to PTEMP[3] the implicant x1x3, as 
every point (in GTJ covered by it is already covered by (x,X, + x,x,). 

Thus, in GT, there is no need for additional implicants. The edge point 
m = 6 may be ignored and we are left with the interval in GT, shown in 
Fig. 4. 

There is only one temporary implicant in PTEMP[3], which is x,x3. 
Hence, all the implicants in PTEMP[3], and hence all the prime implicants 
gathered so far, (x,E, + xix& do not cover any points in GT,. We may 
therefore proceed as if this were the original table. Here, both 1 = 1 and 
m = 2 are edge points, and both induce the same prime implicant, xz. 
This prime implicant is added to the list, and obviously we are left with an 
empty interval (this will be detected by the algorithm when, after the 
control variables are updated, we have 1 > m). Therefore, the algorithm 
terminates with the representation 

x3x‘$ + x,x4 + x2. 

Following the steps of the algorithm, it is relatively easy, yet insightful, to 
convince oneself that this representation is indeed minimal. 

3.3. A Formal Description of the Algorithm 

Data Structure. The following global variables will greatly simplify the 
exposition: 

(1) n, 1, m, i, j. 
(2) PI, a set of implicants of n variables (those maximal implicants 

which have to be included in the representation). 
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(3) For each 1 I i I n, PTEMP[i], a set of implicants of i variables 
(to be thought of as a function of the first i variables x1, x2,. . . , xi>. 
(These represent the implicants in Gq which are obtained by unions of 
the implicants in G&+,.1 

DEFINITIONS. (1) A vector x E (0, 1)’ (i I n) will also be called a 
point. 

(2) GTJk) (or, simply, k) is included in the interval [1, m] if 1 5 k I 
m. It is an endpoint if k = I or k = m; I(m) will be also called the upper 
(lower) endpoint of [I, ml. 

(3) A point k is an edge point w.r.t. the interval [l, m] if k is an 
endpoint of [1, ml, and the point x, defined by flipping its ith bit, that is, 

4.0 = GT(k)(.i), j<i 

x(i) = 1 - GK(k)(i), 

is not included in the interval, namely, GTi- ‘(x) (which equals k + 1 or 
k - 1) is smaller than I or greater than m. We will also use the terms 
“upper edge point” (should 1 be an edge point) and “lower edge point” 
(for m). 

(4) For i, k, I, and m, such that 0 I 1 I k 2 m I 2’ - 1, define a set 
Ak, i, 1, m) to be 

{l I j 2 iJx is in the [I, ml interval (i.e., GT;‘(x) E [l, ml>, where x is 
obtained from GTJk) by changing the value of its jth bit: x(s) = GTi(kXs), 
for s # j, and x(j) = 1 - Gq(k)(j)). 

PROCEDURES. 

(1) Procedure ADD(k). Add to the set PTEMP[il the prime implicant 
(of i variables) P defined as follows: 

if j EA(k,i,l,m) 

otherwise 

for 1 I j < i. Also, add to the set PI the corresponding prime implicant 
(of n variables) P’ defined by 

P(j), P’(j) = d L 
lljli, 
i<j<n. 

for 1 Ijln. 

(2) Procedure AUGMENT - PTEMP(i). For every two implicants, 
P, and P,, in PTEMP[i] with P,(i) = 1 and P,(i) = 0, perform the 
following: first check whether for each j < i it is true that P,(j) = P2( j), 
P,(j) = d, or Pz( j) = d (or possibly all of the above). If so, add to 
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PTEMP[1’ - l] an implicant (of i - 1 variables) p defined by 

p(j) = P,(j), if P,(j) = Pz( j) or P2( j) = d; 

Rj> = PAj), otherwise. 

For every implicant P in PTEMP[1’] with P(i) = d, and which is not 
already covered by any (single) implicant in PTEMP[1’ - 11, introduce into 
PTEMP[1’ - l] the corresponding implicant p of (i - 1) variables, that is, 
F such that p(j) = P(j) for j < i. 

THE ALGORITHM. 

Input : integers 1 and m such that 0 _< 1 I m. 
Output: the set PI of prime implicants. 
Initialization : 

Compute n = ‘lg(m + 1)‘. 
If I = 0 and m = 2” - 1, define the trivial implicant P by P(j) = d 
for 1 I j I: n, let PI = {P), and stop. Otherwise, continue. 
Let i = n 
Let PI and PTEMP[ j] (for all 1 I j _< n> be empty. 

WHILE i 2 1 and 1 I m do: 
If 1 is an edge point of the interval [I, ml, and if 1 is not covered by 
any of the elements of PTEMP[1’], then perform ADD(l). 
Repeat the previous step for m (instead of I). 
Perform AUGMENT - PTEMP(I’). 
Update control variables: 

Set: i = i - 1; 
I = .(I + 1)/2, 
m = .(rn - 1)/2,. 

3.4. Proof of Correctness 

ADDITIONAL DEFINITIONS. To facilitate the discussion, we will define 
two functions. The first, REDUCE, reduces a table of a given size i to a 
table of size i - 1. The second one, EXPAND, does the opposite. How- 
ever, they are not entirely symmetric, since the reduction may be accom- 
plished by “deleting” any chosen bit, while expansion is always performed 
by adding a leading bit to a given table. 

FUNCTION REDUCECT, i, j, s>. 

Input: T, a table of size i, for i r 3 
j, an integer 1 5 j I i 
s, a bit value: s E {O, 1). 
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Output: T’, a table of size i - 1. 
Computation: Let (k,)FLi-’ be the set of indices satisfying: 

(i) T(k,Xj) = s, for r I 2’-’ - 1 
(ii> k,+l > k,, for r < 2’-’ - 1. 
For 0 5 r _< 2’-’ - 1, define 

(i) T’(rXl) = T(k,Xl), if 0 I 1 < j 
(ii) T’(rXl) = T(k,Xl + l), if j I 1 < i. 

FUNCTION EXPAND(T, i, s). 
Input: T, a table of size i, for i 2 0 

s, a bit value: s E (0, l}. 
Output: T’, a table of size i + 1. 
Computation: For 0 I r I 2’ - 1 define: 

T’(r)(l) = s 
T’(rXj) = T(rXj - 1) for 2 I j I i + 1. 

For 2’ I r I 2’+’ - 1, define: 
T’(rX1) = 1 - s 
T’(rX j) = T(2’+’ - 1 - r>(j - 1) 
for2lj<i+l. 

(The first half of T’ is the concatenation of the leading 
bit s to T. The second half is a mirror image of T with 
leading bit (1 - s).) 

It is easy to see that both functions will, in fact, produce tables. (That is 
to say, if T is a permutation of all bit vectors, then T’ will also be a 
permutation of all bit vectors of the corresponding size.) 

We may now turn to the proof. Let us begin with some simple observa- 
tions which will be given without proofs. 

3.4.1. Observation. REDUCE(EXPAND(T, i, s), i + 1, 1, s) = T. 

3.4.2. Observation. GT,,, = EXPAND(GT,, i, 0). 

3.4.3. Observation. GTi- 1 = REDUCE(GT,, i, i, 0) = REDUCE 
(GTi, i, i, 1). 

(In fact, Observation 3.4.3 is a restatement of the definition of Gray 
code tables. Observation 3.4.2 may be used as an alternative definition.) 

Let us define a semi-Gray code table (or a “semi-Gray code”) of size rr 
to be: 

(i) the table containing the empty vector if IZ = 0, or 
(ii) the table computed by EXPAND(T, n - 1,0) or EXPAND(T, 

n - 1,l) for some semi-Gray code table T of size n - 1. 

By Observation 3.4.2, Gray code tables may be obtained from the empty 
table by a sequence of EXPAND( . , * , 0) operations. Semi-Gray codes are 
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those tables obtained by a similar process, when the leading bit (in the first 
half of the table) at each stage may be either 0 or 1. While there exists a 
unique Gray code table of size II, there are 2” semi-Gray code tables of 
the same size. In fact, for each 0 I k I 2” - 1 there is a one-to-one 
correspondence between all 2” semi-Gray codes and all 2” possible n-bit 
vectors which may be the kth point in the table, i.e., for any choice of a 
vector x for any location 0 I k I 2” - 1 in the table, there exists a unique 
semi-Gray code T for which T(k) = x. Next we have: 

3.4.4. LEMMA. Let T be a semi-Gray code table of size i 2 1. Then for 
any j, s such that 0 I j I i and s E (0, 11, REDUCE(t, i, j, s) is also a 
semi-Gray code table. 

Proof. The proof is by induction on i. For i = 1, it is obviously true. 
Assume then that i > 1. If j = 1, the definition of semi-Gray code tables 
is all that is required for a proof. Let us therefore consider the case j > 1. 

Consider T’ = REDUCECT, i, 1, T(l)(l)) (that is, the upper half of T 
with its first bit deleted). T’ is a semi-Gray code table by definition. Hence 
the induction assumption implies that T” = REDUCECT’, i - 1, j - 1, s) 
is also a semi-Gray code table. It only remains to note that EXPANDV”, 
i - 2, T(l)(l)) = REDUCECT, i, j, s). 0 

3.4.5. LEMMA. Let T be a semi-Gray code table of size i. Assume that 
. . 

Jl,Jz,. ‘. 3 j,satisfy11jl<j2< ‘.* < j, I i and that sI E (0,l) for 1 I 
1 _< k. Define T, = Tand T, = REDUCE(T[-,, i - 1 + 1, jI - 1 + 1, sI) for 
1 5 1 5 k. Then Tk is a semi-Gray code table. 

Proof Follows from the previous lemma. 0 

3.4.6. LEMMA. If Tis a semi-Gray code table, then it has the d&ance - 1 
properly. 

Proof. By induction using the definition of semi-Gray code tables. q 

3.4.7. THEOREM. Let [ 1, m ] be an interval in a Gray code table of size i. 
Let 9 denote the set of all implicants P that cover l(m) and are included in 
[I, ml; that is, 

9= {PIP(l) = 1, and 1 -< k s m whenever P(Glj(k)) = l} 
(or 9= {PIP(m) = 1, and 1 I: k 5 m whenever P(GT(k)) = 1) for m). 

Then 9’ has a maximal element w.r.t. inclusion; that is, there exists Q E 9 
such that for all P E 9’ we have &GTT;:(k)) = 1 whenever &G?(k)) = 1. 
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Proof. Suppose [I, ml is given. We will only provide the proof for I, as 
it is symmetric for m. Define 

d, 
‘(j) = GI&(l)( j), i 

if j EA(l,i,l,m) 

otherwise 

for 1 5 j 5: i. 
Note that Q is the implicant defined by Add(l) in the algorithm. 
Two claims complete the proof: 

CLAIM 1. If P E 9 then $ G Q. 

Proof. In view of the definition of A(1, i, 1, m), every xi (1 I j I i) 
whose value can be switched to “d” without covering points outside [1, m] 
has indeed a “d” value in Q. •I 

CLAIM 2. Q is included in [I, m]; that is, for all 0 2 k I 2’ - 1, 
(Z(GTJk)) = 1 implies 1 I k I m. 

Proof. Assume the contrary. Hence, the set K = {kI&G&(k)) = 1, 
k < 1 or k > m] is nonempty. Let k be the element of K that maximizes 
(k - m> mod 2’, that is, the index of the point closest to 1 when distance is 
measured along the unidirectional path m, m + 1, m + 2, . . . , 
2’ - l,O, 1,. . . ) 1 - 1,l. 

Let us now denote by D(k, 0 the set (1 I j _< iIG?;:(kXj) # GTi(lXj)). 
By the definition of Q, D(k, 1) G A(1, i, 1, m). We claim that ID(k, 111 2 2: 
the possibility ID(k, 01 = 0 is, of course, ruled out since k # 1. However, 
ID(k, 01 = 1 is also impossible, since it contradicts the definition of 
A(I, i,l, m). Thus, ID(k, 01 2 2 is established. 

To focus on the different bits of GTJk) and GTJl), we will apply the 
REDUCE function to the table, and reduce all of the bits in which they 
are equal. Suppose, then, that those bit positions are numbered . . J1, J2,. . . , j,, where j, < j, < * . * < j,. Define T, = GT, and, for 1 I s < 
r, let T, = REDUCE(T,-,, i - s + 1, j, - s + 1, GTi(lXj,)). Let US de- 
note the elements of D(k, 1) by d,, d,, . . . , d,, where d, < d, < *. . < d, 
(Note. t + r = i). We may now consider the points in T, which correspond 
to GT,(l) and GTi(k): let x(s) = GTJlXd,) and y(s) = GTJkXd,), for 
1 I s I t, and define 1’ = T,-‘(x), k’ = T;‘(y). Note that by the above 
construction, x(s) # y(s) for all 1 < s I t. 

We now claim that k’ = 1’ - 1 (mod 2’). To prove this it suffices to note 
that had there been another vector in T, between x and y, k could not 
have maximized (k - m> (mod 2’). More formally, if z satisfies T;‘(y) < 
T; ‘(z) < T; ‘( x or T;‘(z) < T;‘(x) < T;‘(y) or T;‘(x) < T;‘(y) < ) 
T,-‘(z), one may define a bit-vector w of length i by w(d,) = z(s) for 
1 I s I t, and w(j) = GT#Xj) = GT(kXj) for j @ D(k, II, and then 
GT-l(w) - m will exceed k - m (mod2’). 
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So x and y are adjacent points in T, that differ in every bit position. But 
t = ID(k, 111 2 2 and, hence, T, does not satisfy the distance-l property. 
But this contradicts either Lemma 3.4.5 or 3.4.6. We therefore conclude 
that Claim 2 and the theorem are proved. 0 

This theorem implies that the algorithm computes a prime implicant of 
the interval [Z, m] in each stage. It is not difficult to see (as we will) that all 
of these prime implicants (computed at different stages) constitute a prime 
implicant representation of the original interval. However, we also need to 
show its minimality. To this end, we require several additional definitions. 

For a subset S z (0,. . . , 2” - 1) in a Gray code table and an integer 
1 I i < IZ, define the reduction ofS to GI;: as Sl; = {x: 11,. . . , i] + IO, l]]. 
For everyy: Ii + l,..., n} --f (0, l), GTnp’(x U y) E S}, where x U y is the 
union of x and y (considered as sets), namely, the function on (1, . . . , n} 
defined by 

XUY(j> = 
i 
x(j), lljli; 

y(j), i<j_<n. 

Denote by Z the input interval [Z, m] in CT,. 

3.4.8. Observation. After every update of the control variables in the 
algorithm, [I, m] is Zli, that is; the reduction of the original interval Z to 
G& 

3.4.9. Observation. After every update of the control variables in the 
algorithm, the subsets of G7;: 

Pi= UPC 
( )I PEPI , 

and 

satisfy 

zi = Zli 

pi = PT, C Zli. 

This observation simply states that the sets PTEMP[i] represent exactly 
those points in Gq which are already covered by prime implicants in PZ, 
and that these do not “overflow” outside of the interval we are trying to 
represent. 
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For an implicant P, define the order of P to be the maximal index of a 
“relevant” variable, that is, the index j E {O, . . . , n} for which: (i) P(k) = d 
for all k > j and (ii) j = 0 or P(j) # d. 

3.4.10. LEMMA. Suppose that P is a prime implicant of Z = [I, m] of 
order j > 0. Then P covers an edge point of Zlj in GTj. 

Proof. Otherwise setting P(j) = d would provide a new implicant 
which is still included in Zlj (in GTj), hence in Z (in GT,), and P cannot 
be a prime implicant. q 

We may now prove: 

3.4.11. THEOREM. For any interval Z = [l, ml in GT, there is a unique 
minimal prime implicant representation given by the set PI computed by the 
algorithm. 

Note that in the provision of the theorem, “minimal” means “minimal 
with respect to the number of terms”; however, from the proof it will be 
obvious that it is enough to require minimality with respect to set inclu- 
sion. On the other hand, uniqueness will imply that the set PI is also 
minimal with respect to the number of factors in each term. 

Proof Existence of minimal representations is obvious. It therefore 
suffices to show that any minimal set of prime implicants 9 that repre- 
sents Z is equal to PI. 

Given such a set 9, define for 0 I i I n, 

and 

Pi = (P E PIP of order i} 

PZi = (P E PZ(P of order i} . 

We will prove that Pi = PZi inductively. Let us begin with i = n. By 
Lemma 3.4.10, every element of both 9, and PZ,, covers an edge point of 
I. On the other hand, every edge point has to be covered by a prime 
implicant in PZ,, and by one in gn. Theorem 3.4.7 implies that these prime 
implicants are equal, and it follows that PZ,, = Pn. (Note that the above 
does not imply a one-to-one correspondence between edge points of Z and 
9n (or PZ,J. It may well be the case that Z has two edge points covered by 
the same prime implicant; but this prime implicant still has to be con- 
tained in both 9n and PI,, which will not include any other prime 
implicants.) 

Let us now assume that Pj = PZj holds for j > i. As for the case i = n, 
it is true that 

0 I I~iI, IPZil ~ 2, 
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and that each element of Sq: and of PZi has to cover an edge point of Z/i 
in Gq. Moreover, PZi E gi holds: given Q E PI,, Q covers an edge point 
not covered by any element of PTEMP[1’]. By Observation 3.4.9, this point 
is not covered by U cp E p,,, j, ij Zs either. The induction hypothesis also 
implies that it is not covered by lJ tp E y,, j, i1P. Since an edge point cannot 
be covered by P E gj for j < i, there IS P E gi covering the edge point, 
and by Theorem 3.4.7 it equals Q. 

It remains to prove that the converse also holds, i.e., that pi E PZj. 
Assume the contrary, namely, that Q E @i \ PZi. Let x: (0,. . . , i) * IO, 11 
be an edge point of Zli covered by Q. If there were a P E PZi covering this 
point, P = Q would follow. Hence, no such P exists. In view of the 
algorithm, this is possible only if x is covered by 

u p 
(PE PTEMP[i]) 

and, by 3.4.9, also by 

In particular, for every y: {i + 1, . . . , n) + (0, 11 there exists PY E U j, ; PZj 
covering x U y. (Again, this correspondence does not have to be l-l.) 

We wish to show that 

GE U Pyc u P= u F, 
(y:(i+l,...,nJ-,(O,l)) (PEPl,, j>i) {Peg,, j>i) 

which would imply that 9 is not minimal with respect to set inclusion, let 
alone with respect to the number of implicants. 

Assume, then, that Q c lJ YpY does not hold. Let z in GT, be such that 
Q(z) = 1 but P,(z) = 0 for all y. Choose y such that y(j) = z(j) for j > i. 
p,,(z) = 0 can hold only if there is an integer k I i such that P,,(k) f d 
and P,(k) # z(k). 

Recall that x: (0,. . . , i) + (0, 1) is the edge point of Zli covered by Q. 
W.1.o.g. assume that x = G?(f), that is, that x is an upper edge point. 
Hence, by the definition of P,,, 

&(xuy) = 1 =F,(xuy). 

Knowing that P,,(k) # d, we obtain P,(k) = x(k) (= (x U y)(k)). How- 
ever, Q(z) = 1 and Q(x U y) = 1 while z(k) # (x U y)(k); hence Q(k) = d. 
This implies that k E A(Z, i, 1, m), namely, that changing the kth bit of x 
generates a point x’ in the interval ZJi. But this further implies that 1. 
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changing the kth bit of x u y generates a point x’ u y within the original 
interval I. By the construction of prime implicants, P,(k) = d must hold, a 
contradiction. This completes the proof of Theorem 3.4.11. q 

3.5. Proof of Time Complexity 

We first note that n is linear in the input size (lg m), hence it suffices to 
show that the algorithm is polynomial in n. We show that the algorithm is 
of time complexity O(n3). Observe the following: 

(1) Computing GT, and GT,-’ (i.e., computing a point in a Gray code 
table given its number, or the other way around), requires O(i) operations. 

(2) Computing A(k, i, 1, m) requires O(i’) operations. 

We now show that at most one implicant generated by elements of 
PTEMP[ i] is added to PTEMP[i - 11, which also means that the size 
of PTEMP[i] cannot exceed 3. This will imply that the construction of all 
PTEMP[i], 1 I i s n, throughout the algorithm does not require more 
than O(n’> operations, and the O(n3) stated bound follows. 

In the following, “stage j” will refer to the point in the algorithm’s 
execution following the “control variables update” at which i is set to j 
(“stage n” will stand for the initial stage). Let lj and mj denote the values 
of 1 and m at state j. 

3.5.1. LEMMA. Suppose that at stages j’ and j (with j’ < j>, ljJ and lj are 
upper edge points. Then 

Gq(lj)( k) = G7jt(lj,)( k) fork <j. 

Furthermore, let P be the maximal prime implicant of (x,, . . . , xi> covering 
lj, and let P’ be the corresponding one for lj,. Then for k < j’, if P(k) = d, 
then P’(k) = d and, moreover, P’(k) # d implies P(k) = P’(k). 

Proof. Note that the “moreover” part is a direct implication of the 
other two facts stated in the lemma. (Namely, if P’(k) # d, then P(k) # d 
and, by equality of the Gray code table entry, P(k) = P’(k) follows.) 

It suffices to prove the lemma under the assumption that there are no 
upper edge points in any stage s, j’ < s < j. (For, if there are such, one 
may proceed inductively.) Consider the point Gq(l?). It corresponds to 
some interval in Gq.. Let r be the uppermost point in this interval. Note 
that r = lj + 1. 

Since lj, is an upper edge point, flipping its j’th bit would result in a 
point outside [l,,, mj,] in G?;.,. This means that 

Gq(l,)(j’) f Gq(r)(j’). 
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By the distance-l property, 

Gq(Zj)( k) = Gq( r)( k) for k # j’, 

and, in particular, for k < j’ we obtain 

G1;( Zj)( k) = Gq,(l/)( k). 

Next consider the prime implicants P and P’. By the fact mentioned 
above and the symmetry of the Gray code table, it is obvious that the index 
r of the point (in Gq) generated from lj by flipping its kth bit (k < j’) is 
larger than any index s corresponding to a point in (the block induced by) 
GTJlj,). If r is in [f,, mj], so is any such s, which means that when the kth 
bit is flipped in lit, m the table Gq,, it does not generate a point outside of 
[ii,, mj,]. Hence, P(k) = d implies P’(k) = d. 0 

A corresponding lemma can be proven and will be assumed, for lower 
edge points. 

3.5.2. LEMMA. The number of prime implicants generated from elements 
of PTEMP[i] and added to PTEMP[i - I] is at most 1. 

Proof The proof is by induction starting with i = n. For this case the 
claim is trivially correct. Consider some i < n, and assume correctness for 
j > i. Let us distinguish between two cases: 

(1) ]PTEMP[i]] I 2, in which case the lemma follows from the 
construction of PTEMP[i - 11. 

(2) IPTEMP[i]I = 3. 

First suppose that one of the elements of PTEMP[i], say, P, satisfies 
P(i) = d (which can only occur if it was generated in previous stages). 
Then one of the two conditions must hold: (i) the other two implicants, 
say, P, and P2, satisfy P,(i) = P,(i), in which case only P is added to 
PTEMP[i - 11, or (ii) P,(i) # P,(i) (and both differ from d by the 
construction of PTEMP[i] from edge points). In this case, P, and Pz 
generate a prime implicant, P, which is added to PTEMP[i - 11, but by 
Lemma 3.5.1, P will not be added to PTEMP[i - l] as it is covered by p. 

Next assume that none of the three implicants has a “d” as its last 
entry. W.l.o.g., suppose {P,, P2, PJ = PTEMP[i] and P,(i) = P,(i) = 1, 
P,(i) = 0. If P, was added to PTEMP[i] by AUGMENT-PTEMP(i + l), 
then a similar argument applies-the remaining two implicants P2 and P3 
correspond to edge points and they generate an implicant F which covers 
P,. Of course, the same holds if Pz was added from PTEMP[i + 11. So we 
are left with the case where PI and Pz cover edge points, and P3 was 
added to PTEMP[il by AUGMENT-PTEMP(i + 1). 
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But in this case, if a prime implicant, FIL is generated by 
AUGMENT-PTEMP for the pair P, and Ps, and P, is generated by it 
for the pair P2 and P,, F1 and & have to be equal: for every j < i, if 
P,(j) = d then P3 was generated by some lower and upper edge points 
with prime implicants P4 and Ps satisfying P,(j) = d and P,(j) = d. 
Lemma 3.5.1 implies that PI(j) = d and P,(j) = d hold as well, whence 
Ft<j> = d and p2( j) = d. 

If, however, P&j) # d, then P,(j) = P&j> = p,(j), which completes the 
proof of Lemma 35.2. 0 

We conclude that the algorithm is of time complexity O(n3). Note that 
the only step which cannot be performed in O(n*> operations is the 
computation of A(k, i, 1, m). 

Remark. The facts that IZ can be computed (rather than be given as 
input) and that this is crucial for n to be linear in the input size were 
pointed out to us by one of the referees. 
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