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The following question is addressed: Given a real-valued function on the partitions of a measure 
space, what are necessary and sufficient conditions in order that it be the value of information 
function for a Bayesian decision maker? A characterization is provided, and the analysis reveals 
a close relationship to cooperative game theory. The tools developed for characterization can 
also be used to derive somewhat surprising results regarding the properties of information 
functions. 

1. Introduction 

A Bayesian decision maker is assumed to maximize expected utility 21 la 
Savage (1954). Considering situations in which some information may be 
known to him/her prior to the actual decision, the decision maker is allowed 
to condition the choice of an action on this information. If we follow 
Aumann (1974) and model information by partitions, each partition is 
associated with the maximal expected payoff that can be achieved given that 
partition. The difference of this function between two partitions, one being a 
refinement of the other, is the value of the additional information to the 
decision maker (already having the coarser partition). [See, for instance, 
Hirshleifer and Riley (1979).] Thus, if we identify utility with money, for 
instance, this difference would be the maximal price the decision maker will 
be willing to pay for the additional information. 

The main goal of this paper is to characterize those real-valued functions 
on the set of partitions that may be the information function value of some 
Bayesian decision maker. 

A fundamental tool in the analysis are expressions of the type 

*We are grateful to Ehud Kalai, Morton Kamien, Roger Myerson, Dov Samet, two 
anonymous referees, and especially Dov Monderer for helpful discussions. The first author 
gratefully acknowledges NSF Grant No. IRI-8814672, and the use of o!Xce facilities at the 
Cowles Foundation, Yale University. 

0304-4068/91/$03.50 0 1991-Elsevier Science Publishers B.V. All rights reserved 



444 1. Gilboa and E. L.ehrer, The value of information 

U-P’) -_W A Q)l - CfU’ v Q) -fly 

where P and Q are partitions, P A Q and P v Q are their finest coarsening 
and their coarsest refinement, respectively, and f is the partition function 
under consideration. The first brackets represent the value of P for a decision 
maker knowing P A Q, while the second is the value of P if the decision 
maker already knows Q. (By ‘knowing’ a partition we simply mean that this 
partition represents what would be the decision maker’s knowledge at each 
state of the world.) 

Thus the sign of the expression above would determine whether an 
information trader - a consultant, for instance - should prefer selling his/her 
knowledge P before or after the decision maker purchases Q, while we only 
consider decision makers who know P A Q. 

It turns out to be the case that f is additively separable, namely, that it is 
representable as 

f(P)= c 0) 
AEP 

for some set function D if and only if the expression (*) vanishes whenever P 
and Q satisfy a simple requirement that we call ‘non-intersection’: P and Q 
are non-intersecting if there is an event A measurable with respect to both P 
and Q, such that on A, P is finer than Q, and on A”, Q is liner than P. In 
other words, if two agents, say, 1 and 2, have the information partitions P 
and Q, respectively, then P and Q are non-intersecting if and only if for every 
state of the world w, at least one of them can deduce what the other knows. 

While this condition may be viewed as a strictly mathematical require- 
ment, it can also be motivated as a reasonable axiom on partition functions, 
and may be interpreted as a partition-version of Savage’s Sure-Thing 
principle. 

However, this condition, which is obviously necessary for f to be an 
information function, is not sufficient, not even in conjunction with mono- 
tonicity, i.e., not even if S is non-decreasing with respect to refinements. 
Omitting some details, the characterization may be described as follows: f is 
an information function if and only if it is additively separable and there is a 
v corresponding to it, every restriction of which (to a measurable subset) has 
a non-empty anticore. 

The analysis shows, for instance, that if the prior is non-atomic and (*) 
always vanishes, i.e., if every two information traders are indifferent to the 
order of the transactions - then f has to be constant, which means that the 
value of all information partitions is zero. 

This result, which we found somewhat surprising, shows that the tools 
developed here for the characterization problem may have other applications 
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as well and, more specifically, that the close relationship between information 
functions and cooperative game theory (with the states of the world playing 
the roles of players) may be worth further exploration. 

The remainder of the paper is organized as follows: Section 2 describes the 
framework and definitions. In section 3 we characterize additive separability, 
while the characterization of information functions is given in section 4. 
Section 5 contains the result mentioned above regarding the uselessness of 
commutative consultants, and some comments on possible extensions are to 
be found in section 6. 

2. Notations and definitions 

Let there be given a measure space (QW,p) where D is the set of states of 
the world, g is the o-algebra of events and p is the decision maker’s (DM) 
prior probability measure. Following Aumann (1974), the DM’s information 
is a priori modeled by a partition P of Sz, i.e., a finite set of pairwise disjoint 
elements of 9 the union of which is 0. For OE Sz, P(o) denotes the element 
of P containing w, and we interpret P as follows: should w obtain, the 
minimal event known to the DM would be P(o). 

Let A be a set of actions. A strategy is an element of S= {s:Q+ A}. 
Assuming the DM has the information partition P, we would require that 
his/her strategy would be measurable w.r.t. (with respect to) P, while A is 
endowed with the o-algebra 2”. Namely, the DM is not allowed to condition 
his/her choice of action on knowledge he/she may not possess. Given a 
partition P, the P-measurable strategies will be called P-strategies and 
denoted as a set by S,,. 

Using Savage (1954) as a conceptual basis, we assume that there is a utility 
a: A x 52 + R such that the DM’s behavior is equivalent to maximization of SD 
u(a)dp over UE A [where u(u):a+ W is defined by u(u)(o) =u(u,w).] [To be 
precise, we should start out with a measurable space (Q,B) and introduce p 
only at this point. The current formulation will, however, facilitate presen- 
tation. See also Remark 6.2 in the sequel.] Savage’s axioms also imply that u 
is bounded [see Fishburn (1970) for a proof and a bibliographical note] and 
w.1.o.g. we shall assume that 0s;~ 6 M. Although Savage’s theorem states 
that p is non-atomic, we will adopt all definitions to other cases as well when 
the need arises, and most notably to the case of a finite a. We also deviate 
from Savage’s framework by allowing a general o-algebra B (rather than the 
special case of B =2’) and requiring ~1 to be o-additive (as opposed to 
finitely additive). [See Chateauneuf (1985).] Finally, note that out framework 
is general enough to deal with state-dependent utility. 

For expository reasons we would like to impose a restriction that would 
allow us to deal with maxima - instead of suprema - as a first stage. Later 
on we will relax this condition, and obtain basically the same results. 
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However, we were not very successful at finding general conditions (on A 
and u) that would guarantee this property and could still be considered an 
exposition simplification. We therefore prefer to explicitly assume that (A, u) 
satisfy the following condition w.r.t. (0,&p): for every BE&? there exists 

max,, A se 44 dp. Th is condition will be referred to as the maximality 
property. 

Given a partition P we can compute the DM’s expected utility: 

which is well defined since (A,u) satisfies the maximality property and P is 
finite. 

The set of all partitions is partially ordered by the ‘finer than’ relation: P is 
finer than Q, denoted P 2 Q, if for every A E P there is BE Q such that A G B. 
Note that this relation is antisymmetric, i.e., PSQ and Q$P imply P= Q. 
The notation ‘Ph Q’ will be equivalent to ‘Q_IP’, to saying that ‘Q is coarser 
than P’, that ‘P is a refinement of Q’, or that ‘Q is a coarsening of P’. 

The set of partitions is a lattice: for every two partitions P and Q there 
exists a unique finest partition that is coarser than both, called their join and 
denoted P A Q, and a unique coarsest partition that is finer than both, called 
their meet, and denoted by P v Q. 

Two partitions, P and Q, are said to be non-intersecting, denoted PO Q, if 
the following holds: for every AE P, either (i) there is BE Q such that A E B; 
or (ii) there are (Bi}l= 1 E Q such that A = WY= 1 Bi. Note that o is a symmetric 
relation. 

All the definitions regarding partitions will be extended in the natural way 
to elements of 9~3 other than 8. Furthermore, if PA is a partition of AES?, PB 
is a partition of BE$J and A n B= fa, we will use PA u PB as the obvious 
partition of A u B. 

We note without proof that: 

Observation 2.2. Two partitions of s1, P and Q, are non-intersecting iff there 
is an event AE&~ such that P=PA u PAc, Q = QA u QA’ [where PACAc), QACAc) 
are partitions of A(A”)] with PASQA and PAchQAC. 

We will denote by PA the set of all partitions of A ES?, where an omission 
of the superscript A will generally mean A =sZ (or an oversight). A partition 
function f: 9’ -P R is called an information function if there are (A, u) satisfying 
the maximality property w.r.t. (fi,L%,j~) such that f =e(A,U). We can finally 
formulate the main question this paper deals with: Given a space (Sz, 9%~) 
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and a partition function f, what are necessary and sufficient conditions on f 
to be an information function? 

3. Additive separability 

In this section we will do some first steps towards the characterization of 
information functions. First, we note that an information function ecA,“) ( * ) is 
monotonic w.r.t. the ‘finer than’ relation, hence monotonicity is surely a 
necessary condition on a partition function f to be an information function. 

However, monotonicity is not a suflicient condition as is shown by: 

Example 3.1. Let Q = { 1,2,3,4} and 

PI = {{l}, {2}, {3,4)}, P, = ({L2), (319 (4I)Y 

P3={{1}, (21, {3}, {4)}, P,={{L2}, {3,4}}. 

Define f(P,)=f(P,)=f(P,)= 1, f(PJ=O, and extend f to all 9 in a 
monotonic way. Suppose f = ecA,_) for some (Au) satisfying the maximality 
property, and define for C E 98, 

u(C) =max s u(a) dp 
aoA C 

so that f(P)=&Epu(C) for all PEP. 
It is easy to check that 

= f(P3) + WA 

where, in fact, f(P,)+f(P,)=2# 1 =f(P3)+f(P4). 

The above example suggests the following definition: a partition function is 
additively separable if there exists a set function u:.%? + R such that f(P) = 
‘&,pu(C). In this case we say that u corresponds to J. In the sequel we will 
use the term ‘set function’ for u:S? + R with u(a) = 0. It is obvious that any 
information function ecA,.) is additively separable (with u defined as in 3.1). 

However, the example also suggests another condition that can be 
formulated in terms of partitions: note that P, v P, =P3, P, A Pz =P, and 
that P, and P, are non-intersecting. We therefore introduce a new definition: 
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a partition function f is partially commutative if, whenever P and Q are 
non-intersecting, f(P) +f(Q) =f(P A Q) +f(P v Q). 

Before stating the main result of this section, let us briefly motivate the 
choice of this term. Rearranging the terms in the equation above, we obtain 

f(P v Q)-fV')=f(Q)-f(P A Q). 

On the left-hand side we have the value of the information partition Q for 
a DM who already has P. On the right-hand side we find the value of Q for 
a DM who only knows P A Q (what is common knowledge between an 
agent with the partition P and one with Q). Hence, if f satisfies this equation 
for all P, Q ~9, it is commutative in the following sense: the value of the 
information Q is the same, regardless of whether Q is acquired before or after 
P was acquired. Such an f will be called commutative. Since we require this 
property only for non-intersecting P and Q, we choose the name ‘partially 
commutative’. As we will see in the sequel, (full) commutativity is much too 
strong a property that means, under fairly general conditions, that all the 
partitions are worthless. 

We can finally state: 

Theorem 3.2. A partition function f is additively separable iff it is partially 
commutative. 

Proof. The ‘only if’ part is quite straightfoward. Assume f(P) =ccEp u(C) 
for all PEP, and let P and Q be non-intersecting. There are events 
{AijI lsign, l$jlki} and a set IE{l,...,n) such that: 

(i) P v Q={Aij(l~i~n,l~j~~i} 
(ii) P A Q={UjAij] lgisn) 
(iii) P={Aij iEZ, 15 jski) U {UjAij i&Z} 

I I (iv) Q={Aij i#Z, 1 s js’ki} u {UjAij iEZ}. 

Hence, we obtain 

f(P)+f(Q)=xv(Aij)+Fv(k/A,)=/(P~ Q)+f(Pv Q)* 
i,j 

To prove the converse, assume that f is partially commutative. We will 
show that it is additively separable in two steps: first, by assuming 93 is finite, 
and then in the general case. 

Step 1. A finite 93. 
We first introduce the following notations: for A E 9, two partitions of it, 
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P,, P, ES” and a partition of its complement, Q ~9’~=, such that P, <=P2, let 

d(P,> P,, Q> =fU’, u Q) -f@‘, u Q). 
For BEW let Pi be the coarsest partition of B (which is always well 

defined) and let Pf be its finest partition (which is well defined, .9+3 being 
finite). 

Claim. The function d is independent of its third argument. 

Proof. Given Q Ir Q2 E PA’ we wish to show that d(P,,P,, Q1)= 
d(P,, P,, Qd. 

It would suffke to prove this for Q2=Pf (and an aribtrary Qi). Note that 
P, u Qz and P, u Q1 are non-intersecting partitions of s2. Since f is partially 
commutative, 

WI u QJ + fV’, u QA 

=fW’, u QJ v (pz u Qd)+fW', u QJ A V’z u QAh 

But (PI u QJ v (pz u QA = PI u Ql and (PI u Qd A (p2 u QA = f’2 u QB so 
that 

or 

WI ” Qz)+V'z u Qd=fV’, u Qz)+f(Pz u QJ 

f(J’, u Qd -fV’z u Qz) =fV’, u Qd- _f(Pz u Qd, 

namely, Wl,P2,Q2) =4Pl, p2, Qd Cl 

In view of this claim, we define d(P,,P,) to be d(P,,P,,Q) for some 
QEV. 

We now turn to define the set function u. Given AC&I, A #a, let 

u(A)=\P;4Iw-d(Pf,P:), 

where 

We wish to show that for P E 9 

f(P)= c v(A). 
AEP 

Assume, then, that P = { Ai}:= 1 is given. The right-hand side is equal to 
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=w i IP+ i d(Pp’,P$) 
i=l i=l 

=f(PF) - i d(P;“, P$). 
i=l 

To see that this expression indeed equals f(P), define P,, P,, . . . , P, E 9 by 

Pi=(U lq<iPfAj)u(Ui<jl"P$), Oliln, -- -- 

so that P, = P and Pn = PF. Note that for 05 is;n- 1, Pi+ 1 and Pi differ only 
on Ai+1 and 

Finally, consider the expression 

n-l 
f(p:)-f(p)=f(Pn)--f(Po)= 1 Cf(Pi+l)-ff(pi)l 

i=O 

citl d(P$P$). 

Hence, 

f(PP)- f d(P$,P$)=f(P) 
i=l 

and this completes the proof of Step 1. 

Step 2. An arbitrary W. 
Consider the set 

H={(h,u)(h:~~~,~{A~W~h(A)#O})~oo, and UER). 

An element (h,a)~H is associated with the linear equation 

La WI 44 = a* 
A subset E of H will be called a system of equations and it is said to have 
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a solution if there is a set function u satisfying all the equations associated 
with the elements of E. 

We wish to prove that the system 

has a solution. vote that the 

CAEP 44 = f(P)*1 
We know, however, that every 

equation associated with ( lP, f(P)) E H is 

finite subsystem of E. has a solution: given 
the subsystem corresponding to P,, P,, . . . , P, E 8, choose the set function u 
provided by Step 1 for the (finite) algebra g induced by their common 
refinement P, v P2 v-.-v P,. 

This fact suggests the following definition: 

B” = {E E H (I& C_ E and every finite subsystem of E has a solution}. 

Obviously, E,cB so that &?#a. t is partially ordered by inclusion, and it is 
easy to see that every chain has an upper bound in 8, namely, the union of 
all the chain elements. Hence, we may apply Zorn’s lemma and conclude that 
there is a maximal element E in 8’. 

For every .4~%9 consider 

which are associated with equations of the type u(A) =a for some UE I& 
Obviously, (H, n E( < 2, since the subsystem (( 11,,), a), ( liAj, b)} will not have a 
solution for a# b. If (H, n El= 1 for all A ~99, one may define u(A) to be 
such that (l{,,, u(A)) E E and this u will be a solution of E, perforce of EO. We 
will now show that this must be the case, that is to say, that HA n E # 0 for 
every A E 9I. 

Assume, then, that for some A E&I, H, n E= 0. Consider h=( l,,,,O), i.e., 
the equation u(A) = 0. By the maximality of E, E u {h) 4 8, which means that 
it has a finite subsystem that does not have a solution. Hence, there is a 
finite E,s.i? such that E, has a solution but E, u {h} does not. Consider the 
linear space of all solutions to E,. The set I’= {o(A)] u is a solution to E,}, 
which is known to be non-empty, cannot equal R since this would imply that 
Ef u {h) does have a solution. Hence V= {a} for some a E R. It is obvious 
that E u {(lA,a)} will also be in 8, which contradicts the maximality of E. 

This completes the proof of Theorem 3.2. 

Given a set-function u, we have a uniquely defined partially commutative 
partition function J However, given such an f, a set function u correspond- 
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ing to it need not be unique. In fact, it will only be unique if 93 is the trivial 
algebra (0, Q), as shown in the following: 

Proposition 3.3. Suppose f is an additively separable partition function and 
v1 corresponds to it. Then v2 also corresponds to f if v= v1 -v2 is a finitely 
additive set function with v(a) = 0. 

Proof. First assume that v1 corresponds to f and that v is finitely additive 
with v(Q) = 0. Then 

*$ (v1+ v)(A) = *Tp Vl(4 + *Gp 44 = f(P) + VP). 

Hence, v, = v1 + v also corresponds to f. 
As for the converse, assume v1 and v2 correspond to f, define v =vl - v2, 

and for A,BEB with AnB=a, let 

P,={A,B,(AuB)“), P, = {A u B,(A u B)“). 

Then 

f(Pz)-f(Pi)=vl(AuB)-VI(A)-VI(B) 

=v,(Au B)-v,(A)-v,(B) 

whence 

v(AuB)=v,(AuB)-v,(AuB) 

=vl(A)-v,(A)+v,(B)-v,(B)=v(A)+v(B). 

Finally, v,(Q) =v,(Q) = f(Pf), whence v(Q)=O. 17 

Before concluding this section we would like to suggest a slightly different 
interpretation of partial commutativity. Our approach is to take Savage’s 
model as a foundation and look for mathematical conditions on partition 
functions that characterize the information functions of that model. However, 
one could start out with partition functions as a primitive of the decision 
making model, and look for behavioral axioms in this framework. A 
reasonable condition in such a set-up could have been the following. 

A partition function f is said to satisfy the sure thing principle if the 
following holds: for every A ~9, P,, P, ~9’*, Q1, Qz ELM’*=, with P, 2 P,, 

fU’, u QA -f (Pz u Qd =f (P, u Qz) -f (Pz u Qd 
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The interpretation of this condition should be as follows: in all four 
partitions the DM would know whether A has occurred or not. Hence, by 
the sure thing principle, the DM should not care about what he/she will 
know should A not occur in order to evaluate information given A. Thus, the 
left-hand side, which is the marginal value of P, to a DM having P, (in case 
he/she has Q1 for A’), should be the same as in the case Qz is the DM’s 
information on A”. 

We note that: 

Obseruation 3.4. An information function f satisfies the sure thing principle 
iff it is partially commutative, i.e., iff it is additively separable. 

Proof. The fact that partial commutativity implies the sure thing principle 
was shown in the proof of 3.2. The converse is trivial in view of 2.1. IJ 

4. Characterization of information functions 

In the previous section we have formulated two necessary conditions on f 
to be an information function: monotonicity and partial commutativity. It 
seems natural to ask at this point whether these conditions are also sufficient. 

We will shortly present the negative answer. It will prove useful to 
introduce the following definition first: a set function u is subadditive if 
u(A) + u(B) 2 u(A u B) wheneverA n B = 0. It is easy to verify the following: 

Observation 4.1. A partially commutative partition function f is monotonic 
iff any (by 3.3-all) of its corresponding set functions are subadditive. 

The insufficiency is proven by: 

Exampfe4.2. Let S={1,2,3], W=2’, p({i))=1/3 for iGO, and define 
u(s1) = 2, u(A) = 1, for A#SZ, 0. Finally, define f via u. This f is certainly 
partially commutative and it is monotonic since u is subadditive. However, 
we claim it cannot be an information function. To prove this, suppose to the 
contrary that f = eCA,uj where (A,u) satisfy the maximality property with 
respect to (C&?&p). For BEW let USE A be an action maximizing the DM’s 
expected utility given B, and denote 

w(B) = ~44 dp. 
B 

Since w corresponds to f, there are (vr, v,,v,) such that w(B)=u(B)+ 
CieBvi and v,+v,+v,=O. 

Next, consider aR and denote ~(a,, i) by Ui (1 $i 5 3), for short. Then we 
obtain 
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w@2)=u(s1)=2=(1/3)(u,+u2+u3). 

For any BELA, 

whence, for B = { 1,2}, 

Similarly, we obtain for (2.3) and {1.3}, 

(l/3)(24, + Uj) $ w({2,3)) = 1 + v2 + v3, 

(l/3)(% +u,) I w(f L2)) = I+ VI + v3, 

and summation yields 

(2/3)(u, + 242 + u3) 5 3 + 2(v, + v2 + v3), 

(1/3)(U,+u,+U,)533/2<2, 

a contradiction. 0 

At this point the analysis seems close enough to cooperative game theory 
to suggest the following definition: for a set function u (which is, in fact, a 
game) and BE&~, the B-anticore of u, denoted AC,(u), is the set of all 
o-additive measures 2 on @ satisfying: (i) 1 is absolutely continuous w.r.t. p; 
(ii) for A E 9#, 1(A) 5 u(A); and (iii) 1(B) = u(B). 

We are about to require that u would have a non-empty B-anticore for all 
BEST. Let us first note some of the properties implied by this constraint. 

Obseruation 4.3. If AC,(u) #a for all BE@‘, then u is monotone [namely, 
A c B implies u(A) 5 u(B)] and subadditive. 

Proof. For monotonicity, let A c B and let IEAC~(U), then u(A)=A(A) $ 
l(B) So(B). As for subadditivity, let A n B =@ and choose Iz E AC, vB(u). 
Then ~(A)+u(B)~;~(A)+~(B)=I(Au B)=u(Au B). 0 

Note, however, that while subadditivity is invariant w.r.t. ‘shifting’ u by an 
additive v, monotonicity is not. 

We can finally provide a characterization of information functions: 
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Theorem 4.4. Given (a,.?$,~) and a partition function f, the following are 
equivalent: 

(i) There are (A,#) satisfying the maximality property w.r.t. (@a,~), with 
Osus M, such that f =e(*,“,. 

(ii) f is additively separable and there is a set function v corresponding to it 
with AC,(u) # 0 and u(B) 5 p(B)M for all BE 93. 

Proof. First assume (i). Define o(B) = max, E A Se u(a) dp. f is obviously 
additively separable and u corresponds to it. v(B) 6 p(B)M is trivial, so it is 
only left to show that AC,(u) # 0. Given B ~93, let as be an optimal action, 
namely, jB u(a3 dp = u(B). Define 

I, thus defined is a a-additive measure that is absolutely continuous w.r.t. ~1. 
Moreover, I,(B) = u(B) by the choice of a,, and A,(A) 5 u(A) by optimality. 
Hence As E AC,(u). 

To show the converse, assume f is additively separable with u satisfying 
the boundedness and anticores’ non-emptiness conditions. Define the set of 
actions as follows: for each BE~ZJ choose &E AC,(u). Let aB be the 
Radon-Nikodym derivative of AB w.r.t. CL, (a,(o) E[O, M] since 
0 5 A,(C) S M,a(C) for all C E 58.) and let A = {as 1 BE 281. Finally, define 
u(ag, o) = as(m). Then for all C E B: 

5 u&J dp = MC) I u(C) 

with equality for C= B. Hence, f =ecA,_), (A, u) satisfy the maximality 
property w.r.t. (52,B,~) and u is bounded as required. 0 

Note that the non-emptiness of the anticores is not implied by additive 
separability. In fact, the partition function f defined in Example 4.2 is 
additively separable, but every w corresponding to it has an empty 
Q-anticore. 

We conclude this section by characterizing the information functions ecA,+) 
in the more general case where (A,u) need not satisfy the maximality 
property. It turns out to be the case that very minor modifications are 
required. First we redefine ecA,“) y b replacing ‘max’ by ‘sup’. Next we define, 
for BESY and e>O, the e-B-anticore of u, denoted s-AC,(u) to be the set of 
a-additive measures I that satisfy: (i) I is absolutely continuous w.r.t. ~1; (ii) 
I(A)sv(A) for all AE~; and (iii) 1(B)>=u(B)-e. 

We may now formulate: 
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Theorem 4.5. Given (L&L%, p) and a partition function f, the following are 
equivalent: 

(i) There are (A, u) with 0 5 u 5 M such that f =e(“,“); 
(ii) f is additively separable and there is a set function v corresponding to it 

such that s-AC,(v) #@ for all BEG and e>O, and v(B) Ip(B)M for all 
BEW. 

The proof is a straightforward adaptation of that of Theorem 4.4. 

5. Applications 

The results presented in this section are not applications of the characteri- 
zation theorems themselves; rather, they are by-products of the analysis 
described above. Throughout this section we will assume that f is an 
information function and that p is non-atomic. (The results would have 
natural asymptotic counterparts for a finite but large Q.) 

We are interested in expressions of the form 

[f(P)-f(P A Q)l-Cf(P v Q)-f(Q)l, 

where P and Q are two partitions of 52. If they are non-intersecting, this 
expression has to equal zero. This fact, which is a simple result of the above 
analysis, may be interpreted as follows: suppose P represents the expertise of 
consultant I and Q represents that of consultant II. The two consultants are 
selling their a priori knowledge to a third party (say, a firm), which is already 
guaranteed to know events that will be common knowlege between the two 
consultants. That is, the firm has the partition P A Q. 

Should consultant I be the first to sell his/her partition, the firm should be 
willing to pay him/her f(P)- f(P A Q). Should he/she be the second, the 
payoff will be f(P v Q)- f (Q). Hence, the expression above measures the 
marginal utility derived from information; if it is, say, always non-negative, 
we would say that f exhibits a decreasing marginal utility (from information). 
Similarly, if it is always non-positive (zero), we would say that f exhibits an 
increasing (constant) marginal utility (from information). 

We here quote some traditional game theoretic definitions. A game v is 
concave if for every A, BE g, 

v(A) + v(B) 2 v(A u B) + v(A A B). 

It is convex if the reverse inequality holds. Note that it is both concave and 
convex iff it is additive. 



I. Gilboa and E. Lehrer, The value of information 457 

The relationship between those game properties and the information 
function properties is given by: 

Proposition 5.1. Let f be an information function on a non-atomic measure 
space (52, $9, u) for (A, u) and let v be a corresponding set function. If f exhibits 
a decreasing (increasing) marginal utility from information, then v is concave 
(convex). 

Proof. Let A,BE@ and we want to show that v(A) +0(B) zv(A u B) + 
v(A n B). (The proof for convexity is symmetric.) 

First assume that A n B#0, and let P= {A, B\A,(A u B)“} and Q= 
{A\B,B,(AuB)“}. Then P v Q={A\B,AnB,B\A, (AuB)‘} and PA Q= 
{A u B, (A u B)‘}, and the concavity inequality follows. 

Next, if A n B = 0, distinguish between two cases: if p(A) = 0 the inequality 
surely holds; otherwise, choose A,r A such that p(A,) =E for an arbitrary 
E>O, and define B,=B u A,. Then B, n A#@ and 

which implies v(A)+v(B)>=v(Au B). 0 

Corollary 5.2. If the marginal utility from information is constant (i.e., both 
decreasing and increasing), then f is constant. 

Proof. In this case, f is fully commutative, i.e., 

f(P)+f(Q)=f(P A Q)+f(P v Q), 

which means that v is additive. Hence, f(P) = v(a) for all P E 8. 0 

Note that when f is constant the marginal utility from any partition is 
zero. This last result may be interpreted as follows: if the consultants do not 
care which one sells his/her expertise first, their information must be 
worthless anyhow [which means that the DM has an (a-) dominant strategy]. 

We conclude this section with two remarks. 

Remark 5.3. Result 5.2 may be slightly strengthened since it is enough to 
require 

.W v Q)-f(Q)Zf(P)-f(P A Q) 

for all P, Q E 9 to obtain convexity of v, while subadditivity is guaranteed by 
f’s monotonicity. 
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Remark 5.4. It is natural to ask whether the converse of 5.1 holds. The 
following example shows it does not. 

Let Q be [0, 11, W the Bore1 sets, and p the Lebesgue measure. Define 
u =g(p) where g: CO, l] + R is defined by 

g(x) = 
8x osxs l/4 
1+4x, 1/4<x$l. 

g is a concave real function; hence, v is concave. However, the partition 
function f induced by u does not exhibit a decreasing marginal utility from 
information: let A = [O, l/4), B= [l/4,1/2), C= [l/2,3/4), and D = [3/4,1]. 
Consider P={AuB,CuD} and Q={AvC,BuD}, with P v Q= 
{A, B, C, D}, P A Q = {Sz}. Then 

f(P)+f(Q)=u(AuB)+v(CuD)+u(AuC)+v(BuD)=12, 

and 

f(P A Q) +f(P v Q) = @) + u(B) + u(C) + o(D) + v(L?) = 13. 

6. Concluding remarks 

Remark 6.1. One may not regard the non-emptiness of the anticores as a 
primitive enough condition. In this case, one may adapt the known theorems 
regarding existence of a non-empty core [Shapley (1967), Bondareva (1963)] 
and for the existence of a-additive measures in it [Schmeidler (1972)]. 

However, a more challenging task would be to formulate the anticore 
conditions in terms of the partition function f directly. We were not able to 
find axioms on f that would not be straightforward (and awkward) 
translations of those we have on u. 

Remark 6.2. The analysis of the problem presented here may be carried out 
to a certain extent without presupposing a prior ~1. A measurable space 
(0, .@?) is enough to define a partition function f and it will then be perfectly 
meaningful to ask what are necessary and sufficient conditions on S for it to 
be the information function for some (A, ,u, u). 

The discussion in section 3 would still be valid and the equivalence of 
additive separability and partial commutativity would hold. However, given 
a set function v, one has to find conditions on it for the existence of a 6- 
additive ,a w.r.t. which v is absolutely continuous. Separation methods may be 
invoked at this point, as, say, in Kelley (1959), but they do not seem to 
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provide very enlightening conditions. At present, we are not aware of any 
nice-looking characterization of such u’s. 

At any rate, one should note that the specification of p is not very 
restrictive from a conceptual viewpoint: given (C&G&~) and a partition 
function f, f is an information function for (Sz, 9i, p) iff it is for some (Sz, $9, v) 
where v is a probability measure that is Lipschitz-continuous w.r.t. CL. Thus, 
the question this paper deals with does allow a certain freedom in the choice 
of the DM’s prior. 
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