Questions in Decision Theory

Itzhak Gilboa

June 15, 2011
History

- **Pascal and Bernoulli**
History

- Pascal and Bernoulli
- Ramsey and deFinetti
History

- Pascal and Bernoulli
- Ramsey and deFinetti
- von Morgenstern-Neumann
History

- Pascal and Bernoulli
- Ramsey and deFinetti
- von Morgenstern-Neumann
- Savage
History

- Pascal and Bernoulli
- Ramsey and deFinetti
- von Morgenstern-Neumann
- Savage
- Anscombe-Aumann
The Bible (Savage, 1954)

- $F = X^S = \{ f \mid f : S \to X \}$
The Bible (Savage, 1954)

- \(F = X^S = \{ f \mid f : S \to X \} \)
- \(P1 \precsim \) is a weak order
The Bible (Savage, 1954)

- $F = X^S = \{ f \mid f : S \to X \}$
- $P1 \preceq$ is a weak order
- $P2 \ f^{h}_{Ac} \preceq g^{h}_{Ac} \iff \ f^{h'}_{Ac} \preceq g^{h'}_{Ac}$
The Bible (Savage, 1954)

- $F = X^S = \{ f \mid f : S \to X \}$
- **P1** \succeq is a weak order
- **P2** $f_{A^c}^h \succeq g_{A^c}^h$ iff $f_{A^c}^{h'} \succeq g_{A^c}^{h'}$
- **P3** $x \succeq y$ iff $f_{A}^x \succeq f_{A}^y$
The Bible (Savage, 1954)

- \(F = X^S = \{ f \mid f : S \to X \} \)
- \(P1 \) \(\sim \) is a weak order
- \(P2 \) \(f^h_{Ac} \sim g^h_{Ac} \) iff \(f^{h'}_{Ac} \sim g^{h'}_{Ac} \)
- \(P3 \) \(x \sim y \) iff \(f^x_A \sim f^y_A \)
- \(P4 \) \(y^x_A \sim y^x_B \) iff \(w^z_A \sim w^z_B \)
The Bible (Savage, 1954)

- $F = X^S = \{f \mid f : S \to X\}$
- **P1** $
\preceq$
 is a weak order
- **P2** $f_{A^c}^h \succeq g_{A^c}^h$ iff $f_{A^c}^{h'} \succeq g_{A^c}^{h'}$
- **P3** $x \preceq y$ iff $f_{A}^x \succeq f_{A}^y$
- **P4** $y_{A}^x \succeq y_{B}^x$ iff $w_{A}^z \succeq w_{B}^z$
- **P5** $\exists f \succ g$
The Bible (Savage, 1954)

- \(F = X^S = \{ f \mid f : S \to X \} \)
- **P1** \(\preceq \) is a weak order
- **P2** \(f_{A_c}^h \preceq g_{A_c}^h \) iff \(f_{A_c}^{h'} \preceq g_{A_c}^{h'} \)
- **P3** \(x \preceq y \) iff \(f_A^x \preceq f_A^y \)
- **P4** \(y_A^x \preceq y_B^x \) iff \(w_A^z \preceq w_B^z \)
- **P5** \(\exists f \succ g \)
- **P6** \(f \succ g \) \(\exists \) a partition of \(S \), \(\{ A_1, \ldots, A_n \} \) \(f_{A_i}^h \succ g \) and \(f \succ g_{A_i}^h \)
Savage's Theorem

Assume that X is finite. Then \succsim satisfies P1-P6 if and only if there exist a non-atomic finitely additive probability measure μ on $S (= (S, 2^S))$ and a non-constant function $u : X \to \mathbb{R}$ such that, for every $f, g \in F$

$$f \succsim g \iff \int_S u(f(s))d\mu(s) \geq \int_S u(g(s))d\mu(s)$$

Furthermore, in this case μ is unique, and u is unique up to positive linear transformations.
Decision Theory at a Crossroad

- Accuracy vs. beauty/generality
Decision Theory at a Crossroad

- Accuracy vs. beauty/generality
- Method: experiments, axioms, neurological data?

Questions in Decision Theory
Decision Theory at a Crossroad

- Accuracy vs. beauty/generality
- Method: experiments, axioms, neurological data?
- Goal: theoretical models or applied decisions?
Decision Theory at a Crossroad

- Accuracy vs. beauty/generality
- Method: experiments, axioms, neurological data?
- Goal: theoretical models or applied decisions?
- Descriptive or normative?
Main Questions

- Rationality
Main Questions

- Rationality
- Probability
Main Questions

- Rationality
- Probability
- Utility
Main Questions

- Rationality
- Probability
- Utility
- Rules and analogies
Main Questions

- Rationality
- Probability
- Utility
- Rules and analogies
- Group decisions
Rationality

- Older concept: “Rational Man” should do...
Rationality

- Older concept: “Rational Man” should do...
- In neoclassical economics: only consistency
Rationality

- Older concept: “Rational Man” should do...
- In neoclassical economics: only consistency
- An even more subjective view: which consistency?
Rationality

- Older concept: “Rational Man” should do...
- In neoclassical economics: only consistency
- An even more subjective view: which consistency?
- Rationality as robustness
Rationality

- Older concept: “Rational Man” should do...
- In neoclassical economics: only consistency
- An even more subjective view: which consistency?
- Rationality as robustness
- Weaknesses (?): subjective, empirical, not monotonic in intelligence
Rationality

- Older concept: “Rational Man” should do...
- In neoclassical economics: only consistency
- An even more subjective view: which consistency?
- Rationality as robustness
- Weaknesses (?): subjective, empirical, not monotonic in intelligence
- Defense
Objective and Subjective Rationality

- A decision maker is defined by two relations $(\succeq^*, \succeq^\wedge)$
Objective and Subjective Rationality

- A decision maker is defined by two relations $(\simeq^*, \simeq^\wedge)$
- \simeq^* – can convince “any reasonable decision maker” that it is right
Objective and Subjective Rationality

- A decision maker is defined by two relations $(\succeq^*, \succeq^\wedge)$
- \succeq^* – can convince “any reasonable decision maker” that it is right
- \succeq^\wedge – cannot be convinced that it is wrong
Objective and Subjective Rationality

- A decision maker is defined by two relations $(\succeq^*, \succeq^\wedge)$
- \succeq^* – can convince “any reasonable decision maker” that it is right
- \succeq^\wedge – cannot be convinced that it is wrong
- Clearly, $\succeq^* \subset \succeq^\wedge$
Classical and Bayesian Statistics

- Classical: attempts to be objective, no intuition
- Bayesian: attempts to incorporate intuition and hunches

Classical – for making a point (to others)
Bayesian – for making a decision (for oneself)
Classical and Bayesian Statistics

- Classical: attempts to be objective, no intuition
- Bayesian: attempts to incorporate intuition and hunches
Classical and Bayesian Statistics

- Classical: attempts to be objective, no intuition
- Bayesian: attempts to incorporate intuition and hunches
- Classical – for making a point (to others)
Classical and Bayesian Statistics

- Classical: attempts to be objective, no intuition
- Bayesian: attempts to incorporate intuition and hunches
- Classical – for making a point (to others)
- Bayesian – for making a decision (for oneself)
Probability

- What is the probability of
Probability

- What is the probability of
 - A coin coming up Head?
Probability

- What is the probability of a coin coming up Head?
- A car being stolen?
- A surgery succeeding?
- A war erupting?
Probability

- What is the probability of a coin coming up Head?
- A car being stolen?
- A surgery succeeding?
Probability

- What is the probability of
 - A coin coming up Head?
 - A car being stolen?
 - A surgery succeeding?
- A war erupting?
Subjective probability

- Relying on remarkable foundations (Ramsey, de Finetti, Savage, Anscombe-Aumann)
Subjective probability

- Relying on remarkable foundations (Ramsey, de Finetti, Savage, Anscombe-Aumann)

- Yet problematic:
Subjective probability

- Relying on remarkable foundations (Ramsey, de Finetti, Savage, Anscombe-Aumann)
- Yet problematic:
 - **Descriptively:** people violate axioms (Ellsberg)
Subjective probability

- Relying on remarkable foundations (Ramsey, de Finetti, Savage, Anscombe-Aumann)
- Yet problematic:
- Descriptively: people violate axioms (Ellsberg)
- Normatively: completeness?
Subjective probability

- Relying on remarkable foundations (Ramsey, de Finetti, Savage, Anscombe-Aumann)
- Yet problematic:
 - Descriptively: people violate axioms (Ellsberg)
 - Normatively: completeness?
- Back to rationality: if it’s so rational, why isn’t it objective?
Subjective probability

- Relying on remarkable foundations (Ramsey, de Finetti, Savage, Anscombe-Aumann)
- Yet problematic:
 - Descriptively: people violate axioms (Ellsberg)
 - Normatively: completeness?
 - Back to rationality: if it’s so rational, why isn’t it objective?
- The Bayesian approach is good at representing knowledge, poor at representing ignorance
Objective probabilities

- Exist in simple cases (iid)
Objective probabilities

- Exist in simple cases (iid)
- Can be defined with identicality, as long as causal independence is retained
Objective probabilities

- Exist in simple cases (iid)
- Can be defined with identicality, as long as causal independence is retained
- Rule-based approaches: logit
Objective probabilities

- Exist in simple cases (iid)
- Can be defined with identicality, as long as causal independence is retained
- Rule-based approaches: logit
- Case-based approaches: empirical similarity
Objective probabilities

- Exist in simple cases (iid)
- Can be defined with identicality, as long as causal independence is retained
- Rule-based approaches: logit
- Case-based approaches: empirical similarity
- But none extends to the cases of wars, stock market crashes...
Alternatives to the Bayesian approach

- Schmeidler (1989): non-additive probabilities (capacities)
Alternatives to the Bayesian approach

- Schmeidler (1989): non-additive probabilities (capacities)
- Integration by Choquet’s integral
Alternatives to the Bayesian approach

- Schmeidler (1989): non-additive probabilities (capacities)
- Integration by Choquet’s integral
- Maxmin EU: there exists a set of probabilities C such that

$$V(f) = \min_{P \in C} \int_S u(f(s)) \, dP(s)$$
Other multiple-priors models

- Nau, Klibanoff-Marinacci-Mukerji: “smooth preferences”

\[\varphi : \mathbb{R} \rightarrow \mathbb{R} \]

\[\int_{\Delta(S)} \varphi \left(\int u(f) \, dp \right) \, d\mu \]
Other multiple-priors models

- Nau, Klibanoff-Marinacci-Mukerji: “smooth preferences”
 \[\varphi : \mathbb{R} \rightarrow \mathbb{R} \]
 \[\int_{\Delta(S)} \varphi \left(\int u(f) \, dp \right) \, d\mu \]

- Maccheroni-Marinacci-Rustichini: “variational preferences”
 \[V(f) = \min_{P \in \Delta(S)} \left\{ \int_S u(f(s)) \, dP(s) + c(P) \right\} \]
Incomplete relation

• Bewley:

\[f \succ g \text{ iff } \forall p \in C \int_S u(f(s)) \, dP(s) > \int_S u(g(s)) \, dP(s) \]
Incomplete relation

- Bewley:

\[f \succ g \text{ iff } \forall p \in C \left(\int_S u(f(s)) dP(s) > \int_S u(g(s)) dP(s) \right) \]

- Fits the “objective rationality” notion
Incomplete relation

- Bewley:

\[f \succeq g \quad \text{iff} \quad \forall p \in C \quad \int_S u(f(s)) \, dP(s) > \int_S u(g(s)) \, dP(s) \]

- Fits the “objective rationality” notion

- Can be combined with the maxmin criterion as “subjective rationality”
Utility

- What is utility and how is it related to well-being or happiness?
Utility

- What is utility and how is it related to well-being or happiness?
- Measurement of well-being and its relation to money
Utility

- What is utility and how is it related to well-being or happiness?
- Measurement of well-being and its relation to money
- The paraplegics and lottery winners
Utility

- What is utility and how is it related to well-being or happiness?
- Measurement of well-being and its relation to money
- The paraplegics and lottery winners
- Problems of measurement
Utility

- What is utility and how is it related to well-being or happiness?
- Measurement of well-being and its relation to money
- The paraplegics and lottery winners
- Problems of measurement
- All happy families...?
Rules and analogies

- In the context of probability
Rules and analogies

- In the context of probability
- Statistics
Rules and analogies

- In the context of probability
- Statistics
- Moral argumentation
Rules and analogies

- In the context of probability
- Statistics
- Moral argumentation
- Recent model unifying the two, as well as Bayesian
Group decisions

- Do groups make better decisions than do individuals?
Group decisions

- Do groups make better decisions than do individuals?
- “Truth wins” vs. risk/uncertainty aversion
Group decisions

- Do groups make better decisions than do individuals?
- “Truth wins” vs. risk/uncertainty aversion
- Aggregation of opinions/judgment aggregation