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CANONICAL REPRESENTATION OF SET FUNCTIONS

ITZHAK GILBOA Axp DAVID SCHMEIDLER

The ~wpresentation of a couperalive tramsferable atility game as g lincur “omiination of
UNUNITITY 2ames may be viewed as an isomorphism between mol-necessarin additive set
functivns on the plavers space and additive ones on (he coalitions space. (Q- altrnatively,
bemweeny monadditive probability measures on a srate space and additive ones on i1 space of
evenis.

We extend the unammity-basis represencation to general (infinite) spaces of piavers, study
spaves of sames which satisfy certain properties and provide some conditions or o-additivity
of the r=suiting additive ser function (on the space of coalitions). These resuits 30 allow us
to extend some representations of the Choquet integral from finite to infinite spaces

L. Introduction. Real-valued set functions. which are por necassarily additive,
are extensivelv used in decision theory. In one interpretation thay represent g
transferable utiijty cooperative game; in another—nonadditive probabilities and
belief functions. In vet other models these functions—and Choquet integration with
[ESPECt 10 (hem—appear as representing decision rules for muiti-eriteria decision
probiems. and. in particular. multi-period and social choice problems.

[t 1s weil Xoown thar the set of “unanimity” games is a lnear basis Tor the space of
real-valued =21 functions (i.e., games) in the case of finitely many plaver. In Gilboa
and Schmeidier (1994) we discuss some implications and interprerations of this
“canonical rapresentation” of games. and provide several results which are al] rather
simple conseguences of this representation.

The purpese of this paper s to extend the analvsis to the general case, of possibly
infinitely maoyv plavers. Note that while infinitely many agents in a Jecision problem
may be simpiv a matter of mathematical convenience. in the context of decisions
under unce=ainry infinitely many states of the world are almost a legical necessity.
(See Savage ¢1934). who suggesis that a state of the world would “resolve all
uncertainey.” Since there typically are infinirely many propositions whase truth value
IS not knoun—cspecially i a dynamic context—infinitelyv many states are needed to
represenr all sonceivable truth value assignments.)

The frst geal is. therefore. to provide a canonical representation kevrem for the
general case. We show that CVeTY game ¢ can be represented as a linear combination
of unanimity zames according to a finitely additive signed measure w. {on the algebra
of sets of coaiitions). We introduce a lew norm on games. and show that with respect
te this (“cormpesition™) norm. the spaces of games for which u . 15 bounded or
bounded and w-additive are Banach spaces. Further, the space ©I games with
bounded cemposition aorm consists of precisely those games which are differences of
totally monocone games.

We aiso provide sufficient conditions for x, to be o-additive and siow that all
games ¢ which are pelynomials in feasures would indeed have a o-additive i
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198 I. GILBOA & D. SCHMEIDLER

Finallv. we provide two results reinterpreting the Choquet integral. The first show
that for every game ¢ there are sets of finitely additive measures, C* and C7, suc
that the integral of any function f with respect to ¢ is simply the difference betwee:
its minimal integral with respect to measures in C7 and the minimal one with respec
to . The second result states {loosely) that if ¢ is totally monotone, the Choquc
integral may be represented as minimum of means or as mean of mima.

Since ail these results appear. for the finite case, in Gitboa and Schmeidler (1994
we shall not expatiate on them here. The reader is referred to the above fo
discussions. interpretations and many additional references.

This paper is organized as follows. Section 2 provides basic definitions and quote
some known rasults. Section 3 presents the main results, the prowfs of which are o b
found in §4. Finally, §5 conciudes with a few remarks, including some commeats or

related literature.

2. Preliminaries. Let () be a nonempty set of players ot siates of the world anc
let  be an algebra of coalitions or events defined on it. We do not assume that Y s
o-aleebra unless specifically stated. If T is finite, we will assume w.lo.g. thatsois {
and that I = 24

The following definitions are formulated for the plaver space { €2, X). However. the:
will be understood to apply to any measurabie space and, in particular, to the spac
of coalitzons to be introduced in the sequel.

A function ¢: & — R with (&} = 0is called a game or a capacity. The space of al
games will be denoted by V and will be considered as a linear space (over R) with the
naturai (pointwise) operations. Similarly, the product of two or more games is o be
consirued as a pointwise cperanon.

For - = IV we will use the following definitions:

(1) - is monotone if A C B implies v(A) < {B) for all 4.3 = 3.

(2Y - is normualized if ©{X) = L

(3Y = s additive if (A UB)Y=0(A)+v(B)forall 4.8 =X with ANB =1

Such a s also calied a signed pnitely additice measure.
14y - 13 o-additive if

L(O A,) = i c(A)

=1

whenever 4, € 3, U7, A € and A, N4, = & for { =, Sechav is also called &
stgred medasure.

(3) = is conrex if forevery 4. B e S, v(A U B+ o(A N BY = 0(A) + v(B) It is
superaddizive if the above holds for all 4, 8 € X with A N B =T\ v is concave or
supaddinive if the converse inequalities hold, respectively.

(oY - is nonnegative 1f v(A4) = 0 forall A € .

(7Y - is totally monorone df it is nonnegative and. for every 7 » 2 and 4,,.... 4,

7,

=

IL'(ELH_J A,) > b (—1)'””5( N —1)

{Ha=fc{l,.... ntl =3

)
(M) - is a finitely additive measure if it is nonnegative and additive.
(W) o is a measure if it s nonnegative and o-additive.
(10 ¢ is outer continwous If for all {4}, €%, A, S4,. Vi, ,,,4, >
Slim, _ o(A) = (N, A
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Observe that additive games arc totally monotone, totally monotone games are
convex and comvex ones are superadditive, Also note that additive games satisfy the
condition of total monotonicity as equality.

A real-vafued function f: QO — R is said to be measurable if, for everv ¢ € R,
{w flw) = a} and {w|f(w) > o} are elements of S. The set of ail bounded measur-
able tunctions wiil be denoted by F. In general, it does not have to be a linear space if
S s not a o-algebra. {A counterexample due to Wakker {1990} is the foilowing: let
Q= =- and fet X be the algebra generated by the Borel o-algebra on (each copy of)
K. Then f(x.¥) =x and g{x,y) =y are measurable, but f+z isnot)

A function 7 = F is said to be simpie if f= Lioepl, where o, € R 4. =3 and
Lg Is the indicator function of B € X. The set of simple functions is denoted .

For ¢ = 1 and 7 = F. the Choquer integral of f w.r.t. (with respect to) s defined
to be

Jrdv = [Tet{ol fw) 5y d+ S leifto) > ) - e()] a.

Note that 1t is well defined if ¢ is monotone and [ is bounded. Also. it is always
well defined if X is fnite. Finally, observe that this definition coincides with the
standard one if - is additive.

For v = 17 we define the core to be

Core(v)y.= {pl{i) pisa finitely additive measure-
(i) p(A) 2e(A). VA4 es:
(i) p(2) = ()},

Note that we zilow a finitely additive measure to be identically zero. For instance,
it o =0. Coret:y = [},

[t will be usetu] to denote £ = S\ {@)L

For T & X', dedine the wnarimire game on T to be the game u, = 1 defined by

y (_”_fl AT
e lO otherwise.

We now turn 1o quote some known results.

TreoreM 204 SuarLey 1963).  Frery convex game has a nonempn: core.

TreEOREM 2.2 TROSENMULLER 1971, 1972, ScHMEIDLER 1584, 1986). 4 monotone
game ¢ s cortex (T and only if

(i} Coretr) = Z:

(i) for cvery f = F, {f = F),

ffdp= min ffdp.
PECorel()

We now turn to quote two-results for the case of a finite space. The first one is the
“decomposition”™ or “canonical representation” theorem, which is the kev to many
other results.

Tueoresm 2.3 Suppose T is finite. Then {up}y o v Is a linear basis for rr. The unique
coeffictents {az)y - « satisfving

U= E ceptl

Ty
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are given by

af = % (-7 sy = o(T) — 2 (,_1)[”—11'( N Tr)

5=7 {fle=ci{l, ..., n}} Yisl

where T, = T o} and T ={w,,..., o,k

In the sequel. {a%} wiil refer to the above coeflicients whenever Y is finite.

TuEoREM 4. Suppose S is finite. Then v is totally monotone iff at = 0 for all
TexX.

Theorem 2.4 is due to Dempster (1967) and Shafer (1976). Both Theorems 2.3 and
2.4 are generalized in Gilboa and Lehrer (1991) to real-valued functions defined on
arbitrarv finite lattices. One of the main goals of this paper is to extend them to set
functiors on infinite algebras. In particular, such an extension would show that
Dempster-Shafter’s “belief functions™ can be defined by total monotonicity even in

the case of an infinite state space.
In the finite case the canonical representation consists of summation over elements

of T In other words. we were using a measurable space (X,2%)and for zach v € I/
we implicitly defined a signed measure on it by

3 b

Then the decompoesition theorem took the form
= 3 afrzt.‘r:fqu,u:_(T).
T=X Y -

In the general case we therefore need an aigebra on X' for which a similar

representation holds.
This aigebra will be constructed as follows: for 7'« X, define T € X by

T={Se~ScT}.

Dencte © = {T:T & 31 = 2%, Let ¥ be the 1lgebra generated bv ©&. and let ¥ be
the o-algebra generated by it. Thus W c W e 2¥ It is easv to see that these
inclusions would be strict for large spaces (say, if O =[0, 1] and = = Bi[0. 1]}, i.e.. the
Borel o-algebra)l.

In case S is finite, we define the composition norm of v to be

fh
t
I
I

lleil = 34

r=x

Treorey 1.3 (GILBOA AND ScumzipLER 1994).  Suppose T is finite. Then for every
v €V othere are unigque ronzlly monotone ¢ < Vsuch that

=T =07 and el = et + el
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Furthermore, ol = (Q) iff ¢ is totally monotone.
We now extend the definition of the composition norm to the general case. Given a
subalgebra X, ¢ X, and 1 = V, Tet riy, denote the restriction of r to X, Then

define, for ¢ = I,
Hell = sup{Jiz',‘g“H IZ, is a finite subalgebra of E}.

It is simple to check that || - || is indeed a norm and that it indeed extends || - || for a
finite . When no confusion is likely to arise. we-will refer to it as “the aorm.” We
will refer mostly 1o the subspace of ¥ consisting of bounded-composition zames:

Ve=lre Vitlelh < =}

We also note without proof that if ¢ s additive, the composition norm of r
coincides with the variation norm as defined. say, in Dunford and Schwartz {1957).
Finally, we obsarve that Revuz (1955-56. p. 229} defines a norm in the same way,
though in a different framework, !

3. Statement of the main resuits. In this section we state the main rasults, which
extend the canonical representation theorem and some of its implications.

THEOREM A, (Related resulr appear in Dubin (1988, 1992)) For eren 1 = 1 there
EXISIS a unique signed finitely additive measure w, on (X W) such rthar

(=) v= [ urdu (T).

Furthermore [ = {iu I and the mapping r — M s linear and continuous on VP
Conversely, erer additire H.on Wdefines v € V by (=) Finallv, v is 1otaly monotone
iff w, is nonnegariye.

In the sequel. g, will alwavs refer to the (signed finitely additive) measure on ¥
defined by . We note that Revuz (1955-56) contains a similar constructuion of a
measure, though his framework differs from ours. 5ee Comment 5.1 below. Other
related results appear in Chequet (1933-4), Honeveutt {1971), and Shafer (1979).

Let us now introduce the following subspaces of I

Vo= {r &V u, is a o-additive signed measure}.

(Equivalently, 7 = (; = Vb{,u.r has a (unigue) o-additive extension to ¥} )
Treorem B. 1% and V° are Bahach spaces with respect to (|- 1. Furthermore,
1P = {p~= cTiTLeT are otally monoione}. (See also Revuz (1935-56, p. 231.)
(See relared resulis in Jaffray-Philippe (1993).)

COROLLARY ("Min Minus MiN™).  Let ¢ € VP, Then there exist two sets of finitely
additive measures. C* and C~. which are convex and closed in the w*-ropology, such

"We are grateful 1o an anonymous referee and Jean-Yves Juffray who has brought Revuzs work to our
atlention. '
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that for afl f = F,,

fdv = min | fdp -~ min ffdp.
0 Iy

pECT 70 p=C”

{The proof uses Theorems B and 2.2.)
The foliowing two theorems provide sufficient conditions for ¢ to belong to V7.
First let us introduce the subspace of polynomials in (o-additive) measures: define

anda, € R fori < Nand A;; Is a measure on 2 .
1
With this Jefinition we may state:
Tueorsn C. pod C V7.
Next we consider the special case in which (1 is countabie.

Tueorey D [f Q) is countable, the mapping v — w_ s a4 bjection from
(¢ & Ve is totally monotone and outer continuous}

onto
{wlw is a measire on W} .

(A relazed result, aeain. in a different set-up, was obtained by Revuz (1935--36).

See Comrment 5.1 below.)
We now proceed to discuss two additional results relating to the Choquet integral.

These wera aiso preseatad in Gilbea and Schmeidler (1994) for the case of a finite =.

Treores B (Related results under different ussumptions appear in Choguet
(1933-33Y. Murofushi and Sugeno (1989), and Wasserman (1990).) Ler ¢ € V' and

F. Tiem

j;lf‘h' = f_[ inf f(w)] diw (T).

wET

CoroLrary (“MEgan of Mins anp Min oF Means™).  Assume that v € V' is
totully merowne and thar f = F,,. Then

fﬂfcﬁ- = L'[J{;&%f{w)] du,(T) = min [fdp_

peCorele) ' Q2

4. Proofs and related analysis.

4.1. Proof of Theorem A. Let us define a basic element to be a subset of Z' of

the form
A‘\ U s
i= 1
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for some A. B, =X and n > 0. Note that €l = %' is a basic element. \K'e will agree
that a representation of a bas:c clement as above presupposes that T = B, € A
Yi<n, B, € B, for i #j. Under these assumptions, the representation is unique.
(Basic e[ements correspond to the function S(xiu,....u,) in Revuz {1935-36.

p. 195).)
LeMMa 4.1.1.  Everny member of W can be represented as the union of finizely many
disjoint basic elements.

Proor. Using the fact that if A= Aﬂ, then 4 N, A_n. the proof is
straightforward. =
It wiil be useful to denote, for (BJL, € %,

sy = T -y na)

[Nt N n} ief

Let us now define p, on basic elements by

8 B) _ () - A(B)).

i=1

Next, extend p. o ¥ by addltmt\ Notice that this definition implies linzaney of .
in r.

Lemma 4120 u is well defined and additive on V.
Proor. Bath parts are standard. O

Lemma 4150
(%) r= LMT du (T)

Proor. Forsvenn § € X,

Jur($vde (T = u ({Thir(S) = 1)) =, ({TT £ S}) = (5 = #(S). o

Next we have
LeMma 114w, s the unigue measure on ¥ sarisfying (*).

PrOGF. Lct u be a measure satisfving (*). Obviously,
(S} =u, (§) =c(S) forall §eX.

Next consider a basic element (A \ U/, 5,). Since u is additive. it has to satisfy

s\ UA

= u(A) —I( Ué,-}
i=1

I

p(A) = T (L=

D+l sl

fi

r(A) —A({ B},_,) W,

which also implies w, = u throughout ¥. ©
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Next. observe that for any finite subalgebra X, € X and its corresponding W, € W,

the nomms of ¢ and g, restricted to =, and W, respectively, are equal. This implies

that lle = {u Il Since the map ¢ — g, is linear, it is also continuous.
The fact that every g on ¥ induces a ¢ € V' is immediately. We are therefore left

with

Leana 113, v is rotally monorone iff u, is nonnegative.

—

Proor. Apply Theorems 2.3 and 2.4 to finite subalgebras. =
This completes the proof of Theorem A.

4.2. Proof of Theorem B. Let us start with the claim that ¥7.¥7 are Banach
spaces. It is obvious that V'? and ¥ are linear subspaces of }". and we have noted
that 1 - |15 a norm. We therefore need to check only completeness.

Levivia 2.1 VP s complete.

Proor. Standard.

Leaaea 3220 V7 is complere.

Proor. Let {¢,}, ., be a Cauchy sequence in V7. Let ¢ be the peintwise limit of
{r,}. By standard arguments, ¢ is weil defined and e — ¢ i = 0 as 7 — . We only
ne=d to show that w,. 1s o-additive.

However.

M = s, =Nl L = lle = oL

“

Hence. 1 is the limit (in the variation norm) of {x },. The latter being o-additive, so

is the former. 0O
Next wa wish to show that V" consists of all differences between totally monotone

functicns. It s obvious that if ¢ 1s totally monotone,
lell = e (£2) < =,

and therefore {¢"— o 7{¢*, ¢~ totally monotone} < V7.
The converse is given by
Lesivia 123, Assume ¢ = V7. Then there are torally monotone v~ v~ such that

© =T — . Furthermore, there are unique such v 7,0~ sarsfving Joi=lv~ i+ lle ™)L

Proor. Given v € ¥®, notice that {lu [l < =, te, p. is bounded. Then, by

Jordan's decomposition theorem (see, for instance, Dunford and Schwartz (1937,
IIL18N. there are finitely additive measures p™, o~ such that p, = 2% — u~ and

Mo 1= N =i+ el

Defining 7,0~ by w™, u” respectively vields the represemtation of ¢. Further-

more. the uniqueness of w ™, u 7 (satisfying the aorm equation) implies that of v, ¢~
. o 4

The characterization of V? as differences of totallv monotone set functions
reminds one of the space B), defined and discussed in Aumann and Shapley (1974)
for 0 = {8 1) and X = B({0, 1])). They define the variation norm to be

Lilar = SUD{ E (S, )y—uv(SpHli@=585¢c - <¢5,_, = ﬂ},

i=0

and 81 o be the Banach space of ail games with bounded variation norm.
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Another clone is the summation norm, defined in Gilboa {(1989) as

"

Hr&ﬁn=sup{21

i=1

e(SH| 1S5, ... 5} is a partition of (‘.}:

BS denotes the Banach space of all bounded summation games.
1t is easy to see thai our_(composition) norm dominates both the variation and the
summation norms. Indeed, an equivalent definition of the composition nomm Is

o f\"- Iy
A—,\U Bf)} is a partition of {2}
j=1 i=1

Considering all the partitions of 0 =% into finitely many basic elements A\
U ;[.‘;IB,?')} one may focus on- those for which &, =1, i.e. partitions of the form

n

ol = supd T () - {8 {

=1
{( A4, \A_,_;l)}. For these
ey = A (B )] =) = oA

and the supremum OvVer sums of such expressions reduces to the variation norl.
On the other hand. one may consider only partitions of the form

where {B-:}j is 2 partition of €. In this case.

() - a1 )] =

k
()~ L (B
|

j=1

and the supremum Over Sums of such expressions is bounded between jirlwm and

e lsum-
We therefore conclude that % ¢ BV n BS.
To see that the converse does not hold. consider the following

Exanple 424 Let 0 =Nand X = 2% Define

1 i iAT < 1,
(A =
e(A) { 0 otherwise.

1t is easy to check that hellver = lellum = 1 However, lrll is unbounded: for each
k, consider A, = QN\{} for 1< k and a partition of () containing the basic
element (O U %, 4,). Obviously. el = e — Aday. =%~ . o

This example may suggest that a bounded A, is the crucial property of games in

b, Yet we note that
Rewark 4.5, There are games ¢ for which A, is bounded vet vl is not.

Proor. Consider the fellowing example: 2 = N, X = 29 and define. for 4 C Q,
® if A =N
m(Ay =<0 A=,
max{al{1..... n} © A} otherwise.
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Next. define

0 if m(A) =0,
£(0) if m(A) = .

f( L J otherwise,

where f:[0.1] — [0, 1} is some function with unbounded variation sansfying floy =

fi)y =0,
For A C % let A = {ni{l,....n} AL
It is easv to check that, for all {B}, € S,

& ok
;\‘:'({BE}EZE) = _\i‘({B.“}z=l)'
Assuming wiog. By 28,2 -+ 2 B, and using Fact 4.2.7 below.
B ) =leB) < L
Hence. A, is hounded. Yet ¢ & BV and, perforce. © & V°. 0
We conclude this subsection with two facts about the function A, which, in
particular. wiil complete the proof of Remark 4.2.5.

Fact +26. Forany T= 3. {B}., c=.

{1 if3i<kst.TSB,
\ 0 otherwise.

Prooe. Given T, {8}, assume w.lo.g that TC B, for i <jand T = B for i > j.
Obvicuasly. if 7 =0, Al,_r({ B},) = 0. Assume, then, j > 0. In this case.

)3 (—H“”M(HBJ

3‘:{7-({85}?21 )
&} =14

It

Y, (—I)MHHT( N Bi)

G=fcil, ..., it =

Y o (-nt=1 oo

Sefc{l, ..., i}

FacT 127, Forall v € Vand {B}5, € 5, if B, € B,_,, then

A (B = a8 )

Proor. By Fact 4.2.6. it is easy to check that the conclusion holds for every
unanimiey Sarme ¢ = . '

For an arbitrary ¢, consider the finite subaigebra of X generated by {B:}f:l‘ On this
subaleebra - is a linear combination of finitely many unanimity games. A, being
linear in ¢ the claim is proved. O
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4.3. Proof of Theorem C. In order to show that poA € V7, it suffices 10 show

that for any measures A,,....A, on ()}, v = [T%_,A; is in V7. This proof 1s done by
canstruction.

Given A.....A;. let A, .., be the product measure on %, ie, A . = A X
A, X oo X Ay on E

Let us define g on ¥ as follows: for every £ € ¥, let
wf &) = A, . .k({(wl,.‘..,mk) e 0w,.....w) € G”})_

That is to sav. for each W-measurable subset of coalitions &, we consider all
coalitions of size k& or less in &, and the measure of & is defined to be the
Ay. .. pmeasure of all k-tuples in (F* consisting of members of one of those

coalitions.
We need to show that g is well defined, that it is a measure and that & = p,.

We first note that

Lemma 4.3.1. Forall A € 3, u(A) is well defined and equals v(A).

Proor. First notice that

={{w,...,w;) € QFlw, A for ! <i<k}=A"

Hence, for all 4 = X', this set is A; ... ,-measurable and

A
p(Ay = A, (A =TTr(4) =c(a). o

=}

Next we have
Lesma 132, u is well defined and o-additive.

Proor. Consider a basic element 4 \ U 7=1éj'

J=1

= (@, ..., 0) € Do, € 4 foraiil-gigk}\_

U {{w...., @) € Q¥ € B forall 1 <7<k}
i=1 0T

Notice that these sets are A,. ... . ,-measurable in 07,
Furthermere. disjoint unions of basic elements are mapped to disjoint unions of
sets of the form above. Hence u is weli defined on W. Its o-additivity follows {rom

thatof A, ., on Q% o
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Noting that A, . . is nonnegative. we conclude that g is a measure on .
Together with the conciusion of Lemma 4.3.1 fand using the uniqueness result in
Theorem A) 2 = u, follows. This completes the proof of Theorem C.

A few remarks may be in order. First, note that the definition of u can be
described as follows: first, consider only nonempty subsets with no more than %

elements:

B, ={Tcl<Tlsk}={{w,.. . ollw sQfori<k}
Next. map every such 7 = B, on all the [Tl {T]-tuptes in Q17! Finally. for each £= W
consider the A, . ,-measure of the image of (&N B,).

Note, however. that in general 8, need not be a subset of X. Furthermore, even if
{w} = X for all w = 0. the set B, need not be W-measurable. For instance. if
0 =[0.1}and I = B{0. 1]). B, is not ¥-. nor even ‘W-measurable.

Yet. in the sense described above, we may say that p, is “concentrated” on B,.
We therefore conclude that for ¢ € pod, w,. is “concentrated™ only an finite
coalitions in €. It is obvious. therefore. that polynomials in measures are only a
“small” -subser of the spaces we are interested in.

Finally. note that peoivnomials in bounded o-additive signed measurss are aiso in

paA. hence in 7.

4.4, Proof of Theorem D. W.lo.g. assume (& = N. & = 2'% [er us 4rst show that
a measure z on W induces a totally monotone and outer continuous zame . Total
monotonicity obviously follows from nonnegativity of .. To prove outer continuity. let
A, 24,- and 4 = =~ _,4,. Consider the (countabie) partition of £ given by

no—=

“—[n \Amn-o-]_]}” o {‘ }

i '\\ _."\ [
EHE Ao 1

By o-additiviry.

Sy = o) — oA F X [e(A) oA, )] e A)

e — hmoe(A,) + ()

7

and the result fellows. Next, we show that if ¢ is rotally monctone and quter

continuous. x  is o-addirive.

Let there be given such a game ¢, Define C; = N\ {i} and let ¥, be the al;febra
generated by {C} . We first wish to show

Lesova 4310 p, iy o-additice on P,

Proor.  Let {(4, % U™ B/),.., be a W, -measurable partition of 0. We need to
prove that ‘ —— -

T o4, - a{(By )] = (o).

I

Notice that each of {4,. B/}, | is the intersection of finitely many C.’s, hence it is

co-finite.
We will now enumerate the A,'s according to “layers,” such that each A; in laver !
18 a subset of some A in laver (/ — 1), and A, is subtracted from the basic element

corresponding o A
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First notice thut there is exactly one 7 for which 4, = Q. Assume w.l.o.g. this1s 1,
and call {4,} “laver 1.7 Next consider the sets {Bf) Since B/ € 0. each of them has
to appear as A. for some _} Assume w.lLo.g. these are 4., 4,...., 4, _,. and let us
refer to these as “laver 2. Continue in this fashion. and notice that ror every 1. J.
there is 2 & such that 4, = B,‘. (Note, however, that many pairs (i, j) may correspond
to the same k.)

Next we claim that by this enumeration all the sets {4 ],. | are exhausied. Indeed,
if this were not the case, therg is a set 4, which is contained in an infinite decreasing
sequence of other .4 s. Yet, since they are all different, such A, cannot be co- ﬁnite

Let us therefore assume that our enumeration is {4}, where / = 1. 1 <i <V,
for each /. and {4,}, is layer /.

Let us further assume w.Lo.g. that for every [, { #j. A, = A, N4, is contained
in A,.,, for some r. That is. that the intersection of every two members of a certain
laver, or a supsrsat thereof, appears in the next one. (This also means that the basic
element corresponding to A,{A4,,) has an empty intersection with A..} Note that.
given the layver structure. one may always introduce these intersections and redefine
the layers accordingly, so as to satsfy this condition, to which we refer as the
“intersection condition.”

We now introduce

Cramm. Forevenn L 2 1.

ko M

U A_,, U éfj: =0 U "{(L*I]r'
ssl laseg ; | ra=i

Loosely. what this equality means 1s that one may “get rid” of the lavers succes-
sively. and. instead of subtracting .—'I_,, and adding their basic elements. w2 may ignore
A, and subtract the next laver sets diréctly.

Froor ofF CrLaist. The proof is. cbviously. by induction on L. For the induction
step it suffices 1o show that. under our conditions.

-
I-J

\ k7 &, i i, i
U } Y (4 Ué;) o\ Usl
= i ] J=t I i=1 j=1 :
To show the inciusion 2, assume that T € Qbur Te B’ for all i. j. Then either
e (Q\ U, 4, orelse T < .4, for some i < k. Butthen T4\ U, &
Converse]y- suppose that a coalmon T belongs to the LHS. If T = (Q >, L;“ A )
T gA, forall 1 < k. and. since B/ €A, T B/ for all i.j. Next consider T 5uch
that T € (.-1-_, U j‘: ,B;’) for some {. We contend that this may be true for at most
one such index {. Indeed, if T & A, ﬂA}, TcA4 nA =A, But then the basic
element corresponding to A, will have a nonempty intersection with 4, . in contra-
diction to our miersection condition. .
Hence, T ¢ A Tor j # [, and, perforce, 7 & B; fOT] #=/and ! €5 <
alsoknowthat 7 2 B fori <s <k, T & ((l\ U o UJ_,B’)
This concludes the proof of the claim.
In order to complete the proof of Lemma 4.4.1, et us consider the expression

X _ Since we

L M,

DD (f'(An) - AJ-([BJ’;'}ILL\JJ‘

[ ) ie

By the claim and the additivity of g, . it equals () — A ({4, ., 30
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Since ¢ is totaily monotone, A, ({A,, ., < o(UMepd )0
Denote 4, = UM A, It suffices to show that ¢(A4,) — 0 as L — =. However,

we know that {(& UM, A, ), ., is an increasing sequence of sets whose union is
(). Focusing on singletons, we conclude that {(Q\ A,)),,, is also an increasing
sequence whose union is (2. In other words, 4, ., A4, aad N, A, =&. By

outer continuity of ¢, however, (., ) — 0 and the lemma is proved. ¢

We continue with the proof of Theorem D. We know that for a totally monotone
and outer conunuous v, 4. is o-additive on ¥,. This impiies that x_ has a unique
o-additive extension 4, to the a»aigebra generated by {C},)] We note that this

o-algebra contains P (hence, also W), since forevery 4 € 3, A = A

So we only need to show that 4, = w, on W.
Let & be the zame (on Q) induced by a,. Since 4, is o-additive. £ is outer-

continuous. Burt for every co-finite A,

BlA) =4, (Ad) =p.(4) =c(A).
Since both : and £ are outer-continuous, ¢ = &, which also implies that 2= g, on

all ¥
Thus we have proved that ¢ is totally monotone and outer continuous iff 4. is a

measure. The fact that the map ¢ ~ u, Is a bijection was already proven in Theorem
A. This concludes the proof of Theorem D.

4.5. Proof of Theorem E. Given ¢ & Vo7 and f= F, assume w.lo.z that f = 0)
Then

[ = ["e({wlf(w) > a)) da

{i
—[[ ({wlf(w) > a)) du, (T)] de.

[n order o =se Fubint's theorem. we need to show that the function g: 2 _X ¥ - R
defined by

gla.T) =ur({wlflw) =a})
is B(Z_) x W-measurable. In other words, the set
=[{a, T)If(w) zaforallw T}

- {(a,ma < int ()}

has to be BLZ _) X W-measurable.
Notice that Zorevery ¢« € R,

[Tiflw) zaforalw e T} =S

where
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and measurabilin of 4 follows by a standard construction. Thus we have

[ = f:_[()xzfr({wif(w) > a}) da du (T)

= L] a0

5. Related literature and concluding remarks.

5.1, epreseniations of the type discussed here were also studied by Chogquet
(1953-54) and Revuz (1955-56). Choquet {1953--54) deals mostly with capacities on a
space ) which is locally convex. In particuiar, his ) is endowed with both a topology
and a linear structure. By contrast. the set ) in our paper is only endowee with an
algebra X.

Revuz (1933-36) deals with a much more general framework. He starts with a
partially orderec topological space X and a function F from it 10 some Abelian
group. In our context, X is the aleebra =, and F is the real-valued ;. He then deals
with (additive) mzasures o defined on the algebra generated by all sets of the form

C (x)={yveXly=uyx]

such that

Fle)y=pu(C_(x)) VxeX.

Obviously. when the ordering on X = X is taken to be set inclusion. on= gets a
structure which is a special case of our framework as weil. However. in our paper
neither € nor X are endowed with a topology. .

While Revur obrains some results which parallel ours. substantial differences
remain. For instzace, the theorem on p. 216 resembies our Theorem DD in that both
suggest 4, is a ¢-additive (nonnegative) measure iff ¢ is outer-continuous and totally
monotone. While our result is restricted to our set-up with a countabie 0. Revuz's
theorem requires some topological assumptions and that X would have no maximal
elements. (Note that this [ast assumption fails in the case where X is an algebra.)

To sum. this paper is close in spirit and sometimes also in proof techaigues to the
works of Chogue! and Revuz. Yet there does not appear to be any simple way to
reduce our tesults to theirs, nor vice versa.

5.2. Updating nonadditive probabilities. The map ¢ - M, suggesis a procedure
for updating a neanadditive probability ¢ map ¢ onto an additive w, {on ¥ update
the latter and project the updated w, “into V. It is simple to check thar one obtains

C(BIAY = ¢(B N A)/v( A).

i
(While using the dual games of {i,} as a basis would give rise to Dempster-Shafer’s
rule

(B MmAy UATY — (A%
r(€) — (A4 ’

t{BlA4) =
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B8]
(]

3.3. Radon—\'ikndvm theorem. The isomorphism between nonadditive set func-
tions on 2 and additive ones on £ also suggests a “*Radon- Nikodvm™ theorem for

nonadditive sct functions {interpreted as nenadditive probabiiities or as games). See a
discussion {for the finite case) in Gilboa and Schmeidler (1994).
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