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1 Background

There are several approaches to formal modeling of uncertainty, knowledge,

and belief. They differ in the way they represent what is known and what is

not known, the formal entities that capture beliefs, the manner in which these

beliefs are updated in the face of new evidence, and so forth. For example,

classical statistical inference describes knowledge by a family of distributions,

where the reasoner is assumed to know that the process is governed by one

of these distributions, but she does not know which one. Evidence is mod-

eled as realizations of random variables, and beliefs are updated according

to classical techniques such as maximum likelihood estimation, the construc-

tion of confidence sets etc. By contrast, the Bayesian approach represents

knowledge as a set of states of the world, such that the reasoner knows the

set but does not know which particular state in it obtains. Beliefs are repre-

sented by a prior probability measure over the state space, while evidence is

modeled as events, namely subsets of states, such that belief revision consists

in Bayesian updating of the prior probability to a posterior. A rather differ-

ent approach considers rules to be the primary objects of knowledge, while

evidence is modeled as particular instances in which rules may or may not
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hold. The rules represent beliefs, and they are updated, in light of new in-

formation, according to belief revision methods (see Alchourron, Gardenfors,

and Makinson, 1985 and Gardenfors, 1992). Another approach assumes that

the object of knowledge are particular cases, or observations, where beliefs

are indirectly expressed by the similarity one finds between different cases

(Schank, 1986, Riesbeck and Schank, 1989). And one may also describe

knowledge and belief by neural nets, fuzzy sets, and other methods.

Given the state of art in the behavioral and social sciences on the one

hand, and the limitation of the different methods on the other hand, it stands

to reason that no single method would dominate all the others. Rather, one

would typically expect that each method would have some applications to

which it is best suited, and others where it may be inconvenient or awkward.

Indeed, the literature in statistics, machine learning, artificial intelligence,

and engineering is rather pluralistic. Even economists, when conducting re-

search, use several methods. However, when modeling a rational agent, the

modern nickname of homo economicus, the latter is restricted to be Bayesian.

This is partly a result of the success of game theory. The concept of strate-

gic (Nash) equilibrium replaced and extended that of price equilibrium, and

greatly enhanced the ability of economists to analyze interactive situations.

The equilibrium as defined by Nash requires mixed strategies, that is, beliefs

that are quantified probabilistically. Moreover, the applicability of games

to economics was further extended with Harsany’s modeling of incomplete

information in a Bayesian way (introducing the concept of Bayesian equilib-

rium). Modeling economic agents as non-Bayesians may cast doubts on the

usefulness of game theory and the validity of its economic conclusions.

Another source of support for the assumption of the Bayesian agent is

its simplicity and its impressive axiomatization. (For the latter see Ram-

sey, 1931, de Finetti, 1931, 1937, von Neumann and Morgenstern, 1944, and

Savage, 1954.1) In the Bayesian approach the objects of knowledge and be-

1We discuss the meaning and goals of axiomatizations below. See also Gilboa (2009) for
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lief, namely events, also model the evidence one may obtain. Further, this

approach has only one type of updating, that is, Bayesian updating. In

comparison to the variety of classical statistical inference techniques, or the

various theories of belief revision in rule-based paradigms, Bayesian updating

of a prior to a posterior shines through as a simple, almost inevitable updat-

ing procedure that suffices for all purposes. Moreover, the Bayesian approach

is tightly linked to a decision-making procedure, i.e., expected utility maxi-

mization, and the two can be jointly derived from very elegant axioms.

However, despite its elegance and generality, its axiomatic foundations

and breadth of applications, the Bayesian approach has been criticized on

several grounds. First, it has long been claimed that there are types of un-

certainty that cannot be quantified by probabilities. (Knight, 1921, Keynes,

1921, Ellsberg, 1961, Schmeidler, 1989.) Following Knight, the literature dis-

tinguishes between situations of “risk”, with known probabilities, and “un-

certainty”, where probabilities are not known. The Bayesian approach holds

that any uncertainty can be reduced to risk, employing subjective probabili-

ties. Yet, there is ample evidence that people often behave under uncertainty

differently than under risk, and many authors also justify such behavior as

rational. Specifically, it has been argued that the Bayesian approach is well

suited to describe knowledge, but that it is poor at describing ignorance.

Second, while the existence of subjective probabilities can be justified by

seemingly compelling axioms on behavior, the Bayesian approach says little

about the origins of such probabilities. The axiomatic derivations suggest

that one should have such beliefs, but not what they should be or where

they should be derived from. Indeed, when one can provide a good account

of the emergence of probabilistic beliefs, these beliefs tend to be objective,

because there are good reasons to adopt them and not others. It is precisely

when one finds little to say about the origin of beliefs that one needs to resort

general methodological discussions as well as descriptions of these classical contributions
and their critique.
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to subjectivity.

Third, in the Bayesian approach beliefs are defined on states or events.

By contrast, in economics data are usually collected and presented as lists

of observations or cases. If economic agents derive beliefs from data, it may

be more intuitive to use models that formally distinguish between data and

beliefs, or between observations and theories.

We find that these weaknesses of the Bayesian approach are related. If

we have a model of how beliefs are generated, we would know when beliefs

would take the form of probabilities, and also when one might seek other

models of beliefs. Thus, we find that it would be fruitful to find out which

probabilities are chosen by an individual when beliefs are probabilistic, and

also which other models of beliefs can be useful when probabilities are too

restrictive.

2 Alternative Theories

2.1 Uncertainty

In the early 1980s, the second author developed a theory of decision mak-

ing under uncertainty that could accommodate non-quantifiable uncertainty,

that is “uncertainty” in the language of Knight (1921), “true uncertainty”

as referred to by Keynes (1921), or “ambiguity” if one adopts the term sug-

gested by Ellsberg (1961). The theory (Schmeidler, 1986, 1989) involved

“probabilities” that were not necessarily additive, with respect to which one

can compute expectation using a notion of integration due to Choquet (1953-

4). This was the first axiomatically-based general-purpose theory of decision

making under uncertainty that generalized the Bayesian approach, and that

could smoothly span the entire spectrum between the Bayesian model and a

model of complete ignorance.

We later developed the theory of maxmin expected utility (Gilboa and

Schmeidler, 1989), holding that a decision maker’s beliefs are given by a set
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of probability measures (“multiple priors”), and decisions are being made so

as to maximize the worst-case expected utility (when probabilities are taken

from the prescribed set). This theory is also axiomatically-based, flexible

enough to model any decision problem that the Bayesian approach can model,

and allows for a continuum of degrees of uncertainty. At the same time,

Bewley (2002) developed a theory that also relies on a set of probabilities,

modeling a partial order that is defined by unanimity: preference for one

option over another only occurs where the former has a higher expected

utility than the latter according to each and every probability in the set. In

the years that followed, additional models have been suggested, among them

are the “smooth” model (Klibanoff, Marinacci, Mukerji, 2005, Nau, 2006,

Seo, 2008) and the model of “variational preferences” (Maccheroni, Mukerji,

and Rustichini, 2006). For a survey, see Gilboa and Marinacci (2010).

It should be stressed that this line of research has not tackled the question

of belief formation. The models mentioned above suggest various generaliza-

tions of the Bayesian approach. They are axiomatically based in the sense

that one has characterizations of the modes of decision making that are com-

patible with the formal model. Hence, one can in principle tell whether a

particular pattern of choices is compatible with each of these models. But

they remain silent on the question of the origin and generation of beliefs,

whether probabilistic or not.

2.2 CBDT

In the 1990s we developed a theory of case-based decisions (CBDT, Gilboa

and Schmeidler, 1995, 2001). The motivation was to take a fresh look at de-

cision making under uncertainty, and focus on intuitive cognitive processes.

Specifically, we sought to develop a formal, axiomatically-based theory that

relies on the assessment of past cases rather than of future events. In doing

so, we took an extreme approach, and veered away from any notion of be-

lief. Thus, the agents in CBDT do not explicitly have beliefs about future
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paths that may unfold should they take various actions. Instead, they are

postulated to choose actions that did well in similar cases in the past.

CBDT has several versions. In particular, one can define the notion

of “similarity” over decision problems alone, over problem-act pairs, or over

entire cases (where a case consists of a problem, an act, as well as a result). It

has two versions, one using a summation over cases, and the other — averages;

and it can be augmented by a theory of the behavior of an aspiration level

that naturally pops up in the analysis.

While the more advanced versions of CBDT are general enough to embed

Bayesian expected utility, the fundamental nature of the exercise was not a

generalization of the classical theory. Rather, the CBDT was focusing on

a particular mode of behavior, awaiting a more general theory that would

be able to elegantly encompass both Bayesian, probability-based decision

making, and analogical, case-based decisions.

2.3 The present project

The present collection includes papers that deal, for the most part, with case-

based predictions. The basic motivation is to use the conceptual basis and

mathematical techniques that were developed for CBDT and to apply them to

the question of belief formation. We wish to study situations in which beliefs

explicitly exist, and might even be given as probability distributions, but to

focus on the cases that gave rise to these beliefs. This project is based on

the premise that studying the relationship between observations and beliefs

may simultaneously shed light on the two questions discussed above: when

do beliefs take a particular form, most notably, probabilities, and, when they

do, which beliefs emerge from a given database of observations.

Most of the papers collected here do not deal with decisions at all. Rather,

they discuss predictions as the outcome of the model. At times, there is an

implicit assumption that these predictions are used according to a certain

decision theory; specifically, probabilities are assumed to be used for expected
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utility maximization. Yet, the formal models ignore decisions. In this sense,

this project is closer to statistics than to standard decision theory. On the

other hand, it is closer to decision theory in terms of method, in particular

in its focus on axiomatic derivations. Before we describe the project in more

detail, a few words on the axiomatic approach are in order.

3 The Axiomatic Approach

3.1 Axiomatizations

Axioms generally refer to propositions that are accepted without proof, and

from which other propositions are derived. Typically, the axioms are sup-

posed to be simpler and more intuitive than their implications: the rhetorical

use of axioms starts with propositions that are accepted and proceeds to those

propositions that the listener is supposed to be convinced of. In mathematics

and related fields, an “axiomatic system” refers to a set of conditions that

captures the essence of a particular structure. Thus, the axioms abstract

away from details, generalize the structure and show what are its essential

building blocks that are necessary to certain conclusions of interest.

The use of “axiomatizations” in economics refers to conditions on observ-

able data that imply, or even perfectly characterize a certain theory. For

example, von-Neumann and Morgenstern’s (vNM) axioms on decision under

risk are equivalent to the existence of a utility function whose expectation is

maximized. This usage of the term “axioms” has much in common with the

previous usages. First, vNM’s axioms such as transitivity or independence

are supposed to be simpler and more intuitive than the explicit representa-

tion of expected utility theory. Such an axiomatization is useful for rhetorical

purposes, in line with the use of axioms in logic: someone who accepts the

axioms is compelled to accept their conclusions. This is obviously useful for

normative purposes, because the nature of a normative exercise is precisely

this: to convince the listener that a certain mode of behavior (such as ex-
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pected utility maximization) is to be preferred. Moreover, the rhetoric of

axioms is also useful for descriptive purposes: a scientist who argues that

people tend to be expected utility maximizers will be more convincing if she

uses simple, acceptable axioms than if she were to use a more complicated

theory, despite the fact that the two may be equivalent.

Second, an axiomatization of expected utility theory such as vNM’s also

serves the purpose of dissection: the axioms state precisely what is assumed

by the theory. This simplifies the task of testing whether the theory is correct,

and it paves the way to refining or generalizing it in case it isn’t. Indeed, a

violation of expected utility theory can be analyzed in light of the axioms.

One can find which axiom fails, and perhaps indicate why and how it can be

relaxed.

However, axiomatizations in economics are assumed to satisfy an addi-

tional condition, which was inspired by the thinking of the logical positivists

in the philosophy of science (see Carnap, 1922): the axioms are supposed

to be stated in terms of observable data. The fact that such axioms imply,

or better still, characterize, a theory stated in terms of theoretical concepts

renders the latter meaningful. Thus, vNM’s axiomatization is viewed as en-

dowing the term “utility” with scientific meaning, showing how it can relate

to observations. Relatedly, a theory that does not satisfy axioms stated in

observable terms should be suspected of being unrefutable, and therefore

non-scientific according to Popper (1934). Axiomatizations therefore guar-

antee that the game we play has a scientific flavor and that, at least in

principle, theories can be tested, and competing theories are guaranteed to

have different observational implications.

Despite the fact that logical positivism and Popper’s notion of refutation

have been seriously challenged within the philosophy of science, we find that

they still serve as useful guidelines for economics. It is generally a good idea

to ask ourselves questions such as, “What does this term mean precisely?”

“Under which conditions will we admit that our theory is false?” The logical
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positivist ideal, and axiomatizations in particular, suggest a healthy exercise

regime that helps us guarantee that we have satisfactory answers to such

questions.

3.2 Axiomatizing predictions

The axiomatizations presented in this volume differ from classical axiomati-

zations in decision theory in that the observable data they refer to are not

choices or preferences but predictions or beliefs. These data are a step re-

moved from economic activity, which involves decisions such as buying and

selling, and this fact is often viewed as a disadvantage, at least as far as

economics is concerned. On the other hand, these data are independent of

the particular decision model one has in mind, and they are closer to the

prediction choices made by statisticians, forecasters, or classifiers. Impor-

tantly, the axiomatizations relate theoretical concepts to some data that can

be observed, and they allow one to ask which pairs of theories are different

in content and which pairs may seem to be different while they are, in fact,

equivalent.

The prediction problems we are interested in are close to statistical infer-

ence. In statistics as well as in machine learning, one deals with questions

that are fundamentally very similar to ours: how should one learn from a

database of observations? Indeed, we will mention some techniques that are

well-known in these fields, such as maximum likelihood estimation or kernel

classification. However, the statistical literature does not typically address

questions of axiomatization, and focuses instead on asymptotic behavior.

Thus, there is a very rich theory about the prediction models that would

guarantee satisfactory long-run behavior, but relatively little about the be-

havior of such models in small databases. Since there are many important

situations in which one is asked to make predictions (or to take decisions)

despite the paucity of truly relevant past observations, we find this problem

to be of interest. We do not believe that one can expect theoretical argu-
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ments to provide clear-cut predictions out of thin air. But we hope that the

axiomatic approach can at least guarantee that the totality of predictions

one offers are coherent in a well-defined sense.

3.3 Statistics and psychology

Our analysis can be interpreted both descriptively and normatively. That is,

one may ask which patterns of learning from data are likely to be observed

by real people who make predictions in economic contexts; and one may

also ask which patterns are desirable, or sensible, and which can serve as

ideals of rational reasoning. There are many applications in which the two

interpretations can coexist. For example, after observing 100 tosses of a

tack, of which 70 resulted in the pin pointing up, it makes sense to predict

the same outcome in the next toss. Moreover, this is what most people

would do. Thus, the normative recommendation and the descriptive theory

coincide in this case. However, there are situations in which the normative

differs from the descriptive. In the above example, the “Gambler’s fallacy”

phenomenon (Tversky and Kahneman, 1974) shows that people might predict

that a sequence (“run”) of several Heads will be followed by a Tail. In

such situations, we typically choose axioms according to their normative

interpretation. In other words, when a modeling choice is to be made, we

tend to find ourselves closer to statistics than to psychology. One reason for

this preference is that axioms are readily applicable to the normative question

of choosing among learning methods; by contrast, it is less obvious that one

may gain much by axiomatizing the way people actually make predictions,

especially when these differ from the normatively acceptable ones.

The difference between statistics and psychology notwithstanding, dur-

ing the course of this project we were several times surprised to see how

close the two can be. Starting from a psychologically-motivated research

on similarity, we axiomatized formulae that turned out to be identical to

those used in kernel classification and kernel estimation of probabilities. We
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likewise found ourselves axiomatizing the preference for theories with higher

likelihood without ever suspecting that this is where the axioms would lead

us. Thus, several times we asked ourselves which conditions it is likely to

assume that real people satisfy, and we found that these conditions charac-

terized well-known statistical techniques. As far as statistics is concerned,

this means that some of these techniques, which were devised by statisticians

without explicitly thinking in terms of axioms, ended up satisfying reasonable

conditions. From a psychological point of view, these coincidences suggested

that the human mind is probably a rather successful inference engine, in that

general principles that make sense for human reasoning are also corroborated

by statistical analysis.

These coincidences should not be overstated. There are surely many cir-

cumstances in which people tend to make silly predictions (cf. the Gambler’s

fallacy). On the other hand, there are many statistical techniques that are

far from anything that can be viewed as a model of natural human reasoning.

Moreover, the coincidences we find certainly do not imply that statistics and

psychology are the same discipline. In fact, the opposite is true: statistics

is mainly interested in developing techniques that are not obvious, namely,

that go beyond the intuitive. By contrast, as far as inductive inference is con-

cerned, psychology is interested in reasoning processes that tell us something

new about the human mind, and these tend to correlate with less reasonable

inferences.

It is therefore possible that the majority of real-life inferences are made by

people in a very reasonable way that also corresponds to simple statistical

techniques. Psychology would tend to focus on the remaining predictions

that are not necessarily rational, and perhaps also not yet well understood.

Statistics would ask how these predictions should be made, in ways that

are too difficult for most people to come up with on their own. Thus, a

sampling of real-life problems may suggest that the normative (statistics) is

close to the descriptive (psychology), but a sampling of recent research in
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either discipline would suggest the opposite. As the axiomatic approach we

propose is rather rudimentary, it probably covers only the basic problems,

where psychology and statistics may not be far apart. It is our hope that,

while this domain covers a small portion of recent research, it does correspond

to a non-negligible portion of everyday predictions.

4 The Combination Principle

4.1 Basic logic and results

Applying the axiomatic approach to the problem of inductive inference, we

wish to identify reasonable patterns of inferences drawn from databases of

observations. Thus, we do not focus on a single database and delve into the

particular inferences that it entails. Rather, we consider an abstract method

of inference, or a function that assigns sets of conclusions to databases, and

ask which conditions should one impose on such a method or function.

In several studies we used axioms that are different manifestations of the

combination principle: if a certain conclusion is reached given two disjoint

databases, the same conclusion should be reached given their union. The

precise meaning of “conclusion” and “database” should be specified. In fact,

they are modeled in several ways in the papers presented here. A database

can be a set of cases; or an ordered list of cases; or a counter vector, specifying

how many times each type of case has been observed. In the first type of

models, “union” is simply the union of two sets; in the second, “union” refers

to concatenation of ordered lists of cases. Finally, if a database is no more

than a counter vector, the union of two such databases corresponds to the

addition of the two vectors, generating a new vector.

In general the three formulations differ and they may give rise to differ-

ent operations on databases. However, in each of the axiomatic works that

follow, we assumed that cases were exchangeable in an appropriate sense. If

a database is a set, we define a notion of case-equivalence, and assume that
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each particular case has infinitely many “replicas”, that is, infinitely many

cases that are equivalent to it. If a database is an ordered list of cases, the

set of all cases already includes replicas because it includes lists in which

the same case is repeated as many times as one wishes. In this context, we

also assume that any list induces the same predictions as any permutation

thereof. Finally, if a database is a vector of non-negative integers, counting

how many times a case of each type has been encountered, specific cases do

not explicitly appear, and exchangeability of cases is built into the model, as

well as the assumption that each case can have as many replicas as we would

like to consider.

Thus, in all three formulations we basically have in mind the same struc-

ture: there exist types of cases, and of each type we have observed a number

of occurrence that is a non-negative integer. The order in which these cases

were observed is immaterial. Should one wish, for example, that more recent

cases would matter more than less recent ones, one could include the time

of occurrence as one of the features of the case. The formal model, however,

needs to assume that only the numbers of observations of each type matter.

It is a crucial and non-trivial assumption that cases can have as many

replicas as one may imagine. For example, if one case is the financial crisis

of 1929 and another — the crisis of 2008, one need not worry about the

order in which they are listed, as each case contains enough information

to describe its recency, and presumably its relevance. However, one may

question how meaningful is it to consider a database in which the crisis of

1929 never occurred and that of 2008 occurred, say, 14 times. It is important

to highlight that our axiomatic derivations do rely on the predictions that

the reasoner would generate given each of the possible databases. In the

case of global events such as wars, financial crises, and the like, the very

formulation of the set of possible databases may lead us to question the

relevance of the axiomatic derivation. By contrast, if one has in mind an

application that is closer to cross sectional data, where different observations

13



are causally independent, it is not too demanding to assume that each case

may appear any number of times, and to require that the reasoner should

make a prediction given any number of occurrences of each case.

Next, we have to clarify what is meant by a prediction. In some papers,

predictions are weak orders, ranking certain alternatives as at-least-as-likely-

as others. The alternatives may be the possible values of the next observation,

giving rise to models of frequency-based prediction, kernel classification, and

kernel estimation. Alternatively, the alternatives may be general theories,

or statistical models, which are ranked for plausibility given the data. This

interpretation allows us to derive maximum likelihood-based selection of the-

ories, as well as refinements thereof such as Akaike’s information criterion,

minimum-description-length criterion, etc. In other papers, the prediction

is that a probability vector (or measure) lies on a certain line segment, or,

equivalently, that a certain random variable has a pre-specified expectation.

The combination principle thus takes different shapes, depending on the

model to which it applies. Its specific incarnations are referred to as “the

combination axiom” or “the concatenation axiom”, depending on the con-

text. The axiomatic derivations make use of other axioms as well. These

typically include an Archimedean condition and a richness condition. How-

ever, the conceptually important assumptions seem to be (i) that prediction

is meaningfully defined for all databases; and that (ii) the combination prin-

ciple holds.

Under these assumptions, our results are that there exists a function

s over pairs of cases, which we tend to interpret as a similarity function,

such that prediction can be represented by (the maximization of) s-weighted

summation or by s-weighted averaging. More explicitly, assume that I is a

counter vector, so that I(c) ∈ Z+ is the number of times cases (observations)
of type c have been encountered. The set of case-types may be infinite, but

it is assumed that
P

c I(c) < ∞ for all databases I. Assume that, given I,

%I is a weak order on a set of alternatives. Gilboa and Schmeidler (2003a)
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employs the combination principle, coupled with the other axioms, to derive

the following similarity-weighted sum representation of %I : for each database

I and any two alternatives a, b,

a %I b ⇔
X
c

I(c)s(a, c) ≥
X
c

I(c)s(b, c). (1)

Gilboa and Schmeidler (2010) modifies the combination principle to allow

for a-priori biases for certain alternatives. Its leading interpretation is that

elements such as a, b are theories, and these may differ in terms of their

complexity. A preference for simpler theories may lead to a representation

of the type

a %I b ⇔ w(a) +
X
c

I(c)s(a, c) ≥ w(b) +
X
c

I(c)s(b, c) (2)

which is axiomatized in this paper.

If predictions are more quantitative and take the form of probability vec-

tors, Billot, Gilboa, Samet, and Schmeidler (2005) show that, as long as the

domain of the prediction function is not limited to a single segment, the

combination principle is equivalent to the following similarity-weighted aver-

aging: for each case-type c there exists a number sc > 0 and a probability

vector pc such that, for each I, the probability the reasoner chooses is

p(I) =

P
c I(c)scp

cP
c I(c)sc

.

An important special case of this rule is the following: one of finitely many

states Ω will occur. Each past case c describes certain circumstances xc and

a realization of a state ωc ∈ Ω. Given a new problem xp, the probability of

state ω is the similarity-weighted empirical frequency of ω in the past:

p(ω|I) =
P

c I(c)s(xc, xp)1{ωc=ω}P
c I(c)s(xc, xp)

. (3)

Clearly, this result does not apply if |Ω| = 2, because in this case the range
of the function I is included in a line segment. Gilboa, Lieberman, and

Schmeidler (2006) provides an axiomatization of this formula in the two-

outcome case.
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4.2 Examples

There are several well-known statistical techniques that are special cases of

the general representations above. Consider the simple similarity-weighted

sum in (1), and suppose that the possible predictions (a, b) and past cases

(c) belong to the same set, as in the case of a repeated roll of a die. Assume

that the similarity function is the indicator function,

s(a, c) = 1{a=c}

This means that only past occurrences of the very same prediction a may

lend non-zero support to this prediction, and that all past cases are deemed

equally relevant. In this case, the ranking according to (1) coincides with the

ranking of possible predictions by their frequency in the past.

Next assume that the set to which past cases c and possible predictions a

belong is infinite, such as Rk. In this case it makes sense to allow the function

s(a, c) to be positive also when a and c are close, though not necessarily

identical. Then, the expressions on the right hand side of (1) are those used

for kernel estimation of a density function (see Akaike, 1954, Rosenblatt,

1956, Parzen, 1962, Silverman, 1986, and Scott, 1992, for a survey).

Along similar lines, assume that the prediction problem is a classification

problem: each observation c = (xc, ac) consists of data xc (say, a point in

Rk) and a class ac to which the point is known to belong. Given a new point

with parameters x, the reasoner is asked to guess to which class a it belongs.

Then, specifying

s (a, (xc, ac)) = k (xc, x)1{a=ac}

the formula (1) boils down to kernel classification with a kernel function k.

More interesting examples involve applications where the set of observa-

tions and the possible predictions have no common structure. For example, if

cases c are past observations, and the predictions a are theories, they do not

typically belong to the same set. However, the axiomatization suggests that,

if the reasoner satisfies the axioms, one can find a function s that would
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describe the reasoner’s predictions via (1) and thus, indirectly, reflect the

reasoner’s perception of the relationship between theories and observations.

Specifically, assume that the function s is negative.2 Define, for a theory a

and an observation c,

p (c|a) = exp (s (a, c))

so that

log (p (c|a)) = s (a, c)

and (1) becomes equivalent to ranking of theories by the (log-)likelihood

function.

The introduction of a-priori biases to the ranking of theories, such as

the preference for simplicity, suggests that a constant should be added to

the log-likelihood function as in (2). Clearly, this formulation includes as

special cases the Akaike Information Criterion (AIC, Akaike, 1974) and Min-

imum Description Length criterion for model selection (MDL, see Wallace

and Boulton, 1968, Wallace and Dowe, 1999, and Wallace, 2005 for a more

recent survey). These do not fall under the category of (1), where there is

no room for the function w. Indeed, ranking of theories by AIC or by MDL

does not satisfy the combination principle as stated. Gilboa and Schmeidler

(2010) invoke a weaker version of this principle to derive such ranking rules.

4.3 Limitations

The combination principle appears to be rather intuitive, and it is perhaps

not too surprising that this principle is satisfied by a variety of statistical

techniques. Yet, there are also many statistical techniques, as well as natural

reasoning procedures, that do not satisfy it. These violations can be classified

into three types: first, there are situations in which the principle is inappro-

priately applied. Given the generality of the principle, stated for general

“conclusions” drawn from databases, there are situations where the principle

2The analysis in Gilboa and Schmeidler (2003) shows that this assumption involves no
loss of generality as long as the number of theories is finite.
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may formally apply, yet it may not be very sensible to adhere to it. For

example, Simpson’s paradox (see Simpson, 1951, or, for example, de Groot,

1975) is a well-known example in which a certain conclusion can be drawn

from each of two databases but not from their union. As we argue in Gilboa

and Schmeidler (2010), this is a mis-application of the principle, because in

this example the theories concerned are not directly about the single data,

but about certain patterns in the data. More specifically, the completeness

axiom (which, in one shape or another, appears in all axiomatizations men-

tioned here) expects one to rank theories given each and every database, even

if the database contains only one observation. This does not seem to be the

case in Simpson’s paradox, and thus we argue that this violation of the com-

bination principle is due to a mis-application of the model. Put differently,

the completeness axiom implicitly restricts the type of observation-prediction

pairs to which the theory should be applied.

A second class of violations of the combination principle are those in

which one considers a statistical technique and concludes that it is indeed a

theoretical flaw that it fails to satisfy such a reasonable principle. According

to our personal taste, this is the case with k-nearest neighbor techniques (Fix

and Hodges, 1951, 1952, Cover and Hart, 1967), which violate the combina-

tion axiom (as in Gilboa Schmeidler, 2003a) because the weight assigned to

an observation does not depend solely on its inherent relevance, but also on

its relative relevance, as compared to other observations. While this is ulti-

mately a subjective judgment, we find that this violation is not among the

merits of k-nearest neighbor techniques.

Finally, there are violations of the third type, in which one finds that the

principle is too restrictive. Two main such categories are situations in which

one learns the similarity function from the data, and when one engages in

combination of induction and deduction. We view each of these as pointing

to important directions for future research, and discuss them separately.
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5 Learning the Similarity

Case-based reasoning relies on the similarity that one finds between cases.

Where does this similarity function come from? Taking a descriptive inter-

pretation, this question brings us to the domain of psychology, and it would

suggest that the similarity function is not a fixed, immutable reasoning tool

that one is born with. Rather, it is learnt from experience. For example, a

physician may learn, through her experience, that for a particular diagnosis,

weight and blood pressure are important features of similarity, whereas blood

type is not. Thus, past cases do not only suggest what will be the outcome of

future cases using the similarity function; they also indicate which similarity

functions are better suited to perform this type of case-to-case induction.

Taking a normative viewpoint, closer to the statistical mindset, it stands

to reason that one may update the similarity function based on data. Indeed,

kernel methods typically change the kernel function as data accumulate, so

that in larger databases a tighter kernel is used, allowing the prediction to

be based mostly on the more relevant cases when there are sufficiently many

of these. But beyond the sheer number of past cases, their content can also

serve as a guide regarding the choice of the similarity/kernel function.

In Gilboa, Lieberman, and Schmeidler (2006) we formally introduce the

notion of empirical similarity. This is defined as a similarity function that,

within a pre-specified class of functions, minimizes the sum of squared er-

rors one would have obtained, were one to use that similarity function in

the past, predicting each outcome based on the rest of the database (the

“leave-one-out” criterion). We develop the statistical theory for estimation

of the similarity function, assuming that the process is indeed governed by a

similarity-weighted-average of other (or past) observations.

The empirical similarity idea can also be used to analyze databases that

are not necessarily believed to have been generated by a similarity-based

process. Rather, one can suggest the idea as a statistical prediction tech-

nique that mimics the informal learning of similarity that human beings
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naturally engage in. Further, one can follow this line of reasoning and use

the empirical similarity to define objective probabilities: probabilities are

defined by similarity-weighted frequencies in past cases, where the similarity

function is learnt from the same database. Thus, one can shed the subjective

baggage of the psychological notion of similarity, and replace it by a notion of

empirical similarity, which has a claim to objectivity similar to those of other

statistical constructs. Gilboa, Lieberman, and Schmeidler (2009) is devoted

to this definition of objective probabilities, and it also discusses the tension

between the proposal to learn the similarity function and the combination

principle that is violated by such learning.

6 Rule-Based Reasoning

We originally formulated the combination principle with case-to-case in-

duction in mind. Somewhat to our surprise, we found that it can be re-

interpreted for case-to-rule (or observation-to-theory) induction, and that it

then basically coincides with maximum likelihood selection of models. Fur-

ther, as mentioned above, the principle can be adapted to introduce con-

siderations other than the likelihood function, such as simplicity or prior

probability, into model selection.

However, when theories are selected based on past observations, and they

are then used to forecast future observations, the combination principle does

not seem appropriate. For example, if one uses observations of variables

x, y in order to estimate a regression model y = α + βx + ε, the selection

of a model (or “theory” or “rule”) boils down to the selection of the para-

meters α, β. Under the standard assumptions, least square estimators are

maximum likelihood estimators, and the ranking of parameter values by the

likelihood function will satisfy the combination principle. However, if the

selected parameters are then used, via the regression equation, to predict the

value of y for a new observation x, the combination principle will be violated.
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Moreover, this should be expected to be the case whenever one engages in

combined inductive and deductive reasoning: inductive reasoning to find a

model based on the data, and deductive reasoning to predict the data based

on the selected model.

Thus, we find that the theory developed here has little to say about rule-

based prediction. Moreover, Aragones, Gilboa, Postlewaite, and Schmeidler

(2005) shows that the theory selection problem is a computational hard one.

Specifically, when one introduces goodness of fit as well as simplicity as model

selection criteria, very reasonable formulations of the problem render the se-

lection of the “best” theory an NP-Hard problem. This implies that even the

first step, of case-to-rule induction, may be too complicated to be performed,

either by humans or by computers.

7 Summary

We believe that the axiomatic approach to inductive inference is important

and useful. It helps us understand what theories actually assume; it high-

lights equivalences between different formulations of the same theory; it guar-

antees that theories have a clear empirical content; and it may ensure that

the method one chooses for inductive reasoning is coherent and sensible even

if the database is small and asymptotic results are of limited relevance. Ide-

ally, one would like to have axiomatic derivations of all theories one uses,

and use the axioms to help select a theory for specific classes of inductive

inference problems.

Unfortunately, the results we report here indicate only partial success.

All the axiomatic results rely very heavily on the combination principle. We

find this principle a reasonable starting point, but it certainly cannot be con-

sidered a universal condition on inductive inference. Future research might

find more flexible axiomatic approaches that would be able to generalize the

theories presented here to include other types of reasoning.
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The book is organized as follows. As background, we start with two

axiomatic derivations of case-based decision theory. The first, Gilboa and

Schmeidler (1995), is the original paper, highlighting the basic ideas. The

second, Gilboa and Schmeidler (1997), extends the theory to incorporate act-

similarity considerations, and introduces the mathematical structure of the

combination principle. Several of the subsequent papers use this paper as

their mathematical backbone.

Next we consider inductive inference as modeled by an “at least as likely

as” relation. The basic tools are given in Gilboa and Schmeidler (2003a). If

the objects to be ranked are events in a given state space, one may hope to

say more, as there is a measure-theoretic structure one may use. On the other

hand, some auxiliary assumptions are inappropriate in this context. Gilboa

and Schmeidler (2002) deals with this case, and with the combinatorial issues

that arise if one wishes to obtain a probability function over events based on

likelihood rankings that satisfy the combination principle.

The application of Gilboa and Schmeidler (2003a) to theory selection is

limited to the maximum likelihood principle. As mentioned above, this is

extended to an additive trade-off between simplicity and likelihood in Gilboa

and Schmeidler (2010). This paper is therefore the next in the volume.

When the observable data are numerical probabilities, Billot, Gilboa,

Samet, and Schmeidler (2005) provide an axiomatization of the similarity-

weighted-frequency formula. It is followed by Billot, Gilboa, and Schmeidler

(2008), which characterizes the exponential similarity function in the context

of this formula.

However, one may only go so far when using theoretical considerations for

the selection of a similarity function. In the final analysis, the choice of the

function remains an empirical issue, which is what Gilboa, Lieberman, and

Schmeidler (2006) is about. This paper also completes the axiomatization

of the similarity-weighted frequency formula for the single-dimensional case.

It is followed by Gilboa, Lieberman, and Schmeidler (2009), which offers
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the empirical similarity, coupled with the similarity-weighted formula, as a

definition of objective probabilities.

While the empirical similarity papers suggest a new statistical technique

and a new definition of objective probabilities, they also highlight the lim-

itation of the axiomatizations provided here, as they focus on violating the

combination principle (which lies at the heart of these axiomatizations). We

then move to discuss the complexity of theory selection, in Aragones, Gilboa,

Postlewaite, and Schmeidler (2005), which indicates another important di-

rection in which the axiomatic theory of inductive inference may be enriched.

Finally, we conclude with two applications of the mathematical techniques

developed in Gilboa and Schmeidler (1997, 2003) to other problems. Gilboa

and Schmeidler (2003b) applies the method to the derivation of a utility

function, coupled with the expected utility principle, in the context of a game,

that is, without referring to lotteries other than the game offers. Gilboa and

Schmeidler (2004) offers a definition of subjective probabilities limited to

the distributions of given random variables, without reference to the (much

larger) underlying state space. None of these two papers is related to the

main project in terms of content. However, both contain results that may

be useful for certain extensions, such as modelling memory in a continuous

way.
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