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This paper provides two axiomatic derivations of a case-based decision rule. Each
axiomatization shows that, if preference orders over available acts in various con-
texts satisfy certain consistency requirements, then these orders can be numerically
represented by maximization of a similarity-weighted utility function. In each
axiomatization, both the similarity function and the utility function are simulta-
neously derived from preferences, and the axiomatic derivation also suggests a way
to elicit these theoretical concepts from in-principle observable preferences. The two
axiomatizations differ in the type of decisions that they assume as data. Journal of
Economic Literature Classification Number: D80. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

Case-based decision theory (CBDT; Gilboa and Schmeidler [4, 6]) pos-
tulates that decisions are based on the relative success of actions under
similar circumstances in the past. Formally, assume as given a set of deci-
sion problems P, a set of acts A, and a set of outcomes R. The decision



maker’s memory, M, is assumed to consist of n cases, which are triples of
the form (p, a, r) ¥ C=P×A×R. A case c may be viewed as a story in
which problem p was encountered, act a was chosen, and outcome r was
consequently experienced. A pair of a problem and an act is also referred
to as a circumstance. The decision maker has a utility function over out-
comes, u: RQ R, and a similarity function over circumstances, s: (P×A)×
(P×A)Q R+, and, given a problem p ¥ P and memory M, he or she
chooses an act that maximizes2

2 The analysis that follows also holds when the set of available acts depends on the decision
problem. For simplicity of notation, however, we use the same set of acts for all problems.

U(a)=Up, M(a)= C
(q, b, r) ¥M

s((p, a), (q, b)) u(r). (1)

This paper addresses the question of axiomatic derivation of the above
rule. That is, we seek to find conditions on choices that can be assumed
observable and that will be equivalent to the existence of a utility function
and a similarity function such that decisions are made so as to maximize
the corresponding U. Such a set of conditions, or axioms, may help us
better judge this decision rule for descriptive and normative purposes alike.
Moreover, to the extent that the axiomatization pins down the utility and
similarity functions uniquely, it can serve as a definition of these theoretical
terms by (in-principle) observable data.

Gilboa and Schmeidler [5] have derived the similarity function in (1) by
assuming a given utility function. That is, they assumed that the outcomes
are real numbers and suggested axioms involving addition of these
numbers. These axioms make sense only if one interprets the numbers
as utility levels. In this sense, their axiomatization is comparable to de
Finetti’s [2] axiomatization of expected utility. More precisely, if a deci-
sion maker finds payoff numbers to be meaningful and if he or she behaves
according to de Finetti’s axioms, the latter may serve to elicit the decision
maker’s subjective probabilities. Similarly, if an individual relates to payoff
numbers in Gilboa and Schmeidler’s model, and should he or she obey
their axioms, these axioms may be used to elicit his or her subjective
similarity judgment. However, de Finetti’s axioms will not be satisfied by
an individual who is, say, risk averse with respect to the payoffs. Corre-
spondingly, an individual is likely to treat payoffs in a non-linear way in the
case-based framework too and therefore should not be expected to satisfy
the axioms presented by Gilboa and Schmeidler for CBDT. In addition, in
many applications of models of decision making, particularly in circum-
stances of uncertainty, outcomes are formally represented by multidimen-
sional vectors, i.e., commodities bundles or production plans. De Finetti’s
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axioms, as well as Eq. (1) with R=R, are not even defined for these
general non-numerical outcomes.

An axiomatization of the decision rule (1) that presupposes neither
similarity nor utility will provide us with a more general understanding of
the normative and positive aspects of this rule. It will also allow us to
define and elicit similarity values for individuals who do not treat numeri-
cal outcomes linearly or who face non-numerical outcomes, which can be
represented numerically only through a concept such as utility. In a way
that is analogous to Savage’s [14] joint derivation of utility and of subjec-
tive probability,3 we seek to derive both utility and similarity from axioms

3 For related derivations see Grodal [8], Gul [9], and Wakker [16, Theorem IV.2.7].

that presuppose none of these concepts to be already quantified.
Preference axiomatizations typically rely on choices that are, to some

degree, hypothetical. In particular, derivations of case-based decision rules
resort to choices that are based on various possible memories. Indeed, a
given memory induces a certain act. Since any further observation of the
same individual will be based on a different (and longer) memory, a single,
concrete sequence of choices will typically not contain enough information
to uniquely define a similarity function, let alone both a similarity and a
utility function. One therefore often assumes that the data are rich enough
to express preferences involving not only the actual memory, but also
related, hypothetical memories constructed from it. In particular, hypothe-
tical memories consist of cases that combine circumstances that were
actually encountered with various outcomes, in addition to those actually
experienced in the respective cases. Indeed, one cannot hope to obtain
separation of similarity from utility in Eq. (1) unless some freedom in the
construction of cases is allowed.

There are two ways to construct classes of hypothetical memories, rich
enough for our purposes. The first allows one to consider memories that
are obtained from the actual one only by replacing the actual outcomes
with other outcomes from the set R. To obtain the desired result we assume
that the set R is rich enough, as, say, an interval of real numbers. The
alternative approach, on the other hand, allows one to consider models
where the set of outcomes, R, is finite. Especially, one may restrict the
model to outcomes that have been actually experienced. Thus, possible
cases are combinations of circumstances and outcomes that both appeared
in actual memory, but not necessarily in the same case. Obviously, starting
with memory of size n, there are at most n2 such combinations. In the
formal presentation we will deal with this special assumption, and the
extension to an arbitrary finite set, R, is obvious. This approach further
demands that any memory, generated by replication of such cases, be con-
sidered.
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The first approach seems quite natural when the outcomes are monetary
payoffs, as in the case of investment problems. Similarly, one may imagine
the experience of consuming an arbitrary bundle in a convex set, as in the
neo-classical economic model. There are, however, situations where it is
hard to imagine outcomes that were not actually experienced. For instance,
it is often argued that people who have not experienced extreme outcomes
such as starvation or prolonged unemployment cannot imagine these expe-
riences. Other, less dramatic examples, include the choice of a destination
for a vacation trip. In such examples, the second approach taxes the
decision maker’s imagination to a lesser degree.

Sections 2 and 3 provide the two axiomatizations. All proofs and related
analyses are relegated to the appendix.

2. THE OUTCOME TRADEOFF APPROACH

Consider an n-list E, to be interpreted as the circumstances (problem-act
pairs) that have been encountered in the past, say E=((p1, a1), ...,
(pn, an)). (Since the memory M is a list in C=P×A×R, E is the projec-
tion of M on the first two coordinates, i.e., P×A.) The set of outcomes R
is endowed with a binary relation R, weakly ordering the outcomes from
good to bad. R contains a neutral outcome, denoted h. A context x is an
n-list (x1, ..., xn) ¥ Rn of outcomes. The interpretation is as follows. There
are n cases in memory. Each case is characterized by a pair problem-act.
The n-list (x1, ..., xn) describes the context where for i (i=1, ..., n), xi is
the (hypothetical) outcome obtained when the problem pi was encountered
and the act ai was chosen. For x ¥ Rn, i [ n, and a ¥ R, aix we denote the
context x with xi replaced by a. Thus aibjx denotes the context x with xi
replaced by a and xj replaced by b. We will also denote aibjx by abijx.

Each context x generates a preference relation Rx. It is important to
emphasize that the axiomatizations in this paper (as well as the one in
Gilboa and Schmeidler [5]) employ the so-called ‘‘context approach’’:
preferences over a set A are assumed to depend on the context x. Much of
the axioms and most of the mathematical work is done in the space of
contexts. However, contexts are not the objects of choice and they are
therefore not ranked. This stands in contrast to the bulk of the literature
on axiomatic derivations in decision theory.

Because the problems and acts chosen are fixed, the preference relation
induced by a context depends only on the preferences over the outcomes.
We will thus assume, for outcomes a, b, that, if a ’ b, then Raix=Rbix. A
function V represents Rx if V: AQ R is such that aRx b if and only if
V(a) \ V(b). The binary relations ’ , P , Q , O , and the same symbols
with subscripts, are defined as usual. For the constant-neutral context, i.e.,
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x=(h, ..., h), all acts are assumed to be indifferent. We also assume that
there exist outcomes strictly preferred to the neutral outcome h and others
that h is strictly preferred to.

This paper considers the following quantitative representations for the
relations Rx: There exists a function u: RQ R and for each act a ¥ A and
each problem i there exists a real number sai , such that for every context x,
the binary relation Rx is represented by

aW C
n

i=1
sai u(xi), (2)

where u is the utility function that will represent R in the main theorems,
and sai is the similarity weight of act a with respect to the act chosen in
problem i. Clearly, Eq. (2) coincides with Eq. (1) when s((p, a), (q, b))=sai
and (q, b) varies over E. For a, b ¥ A, whether a is preferred to b is decided
by the sign of

C
n

i=1
(sai −s

b
i ) u(xi). (3)

Under a minimal nondegeneracy assumption, this representation requires
that u(h)=0. Problem i is favorable for a vis-a-vis b if aP b and aRbix b
imply aPaix b. It is neutral to a vis-a-vis b if the preference between a and b
does not change when the ith coordinate of the context is changed, and it is
unfavorable for a vis-a-vis b if aP b and aQbix b implies aOaix b. In the
presence of certain richness conditions, these concepts will correspond to
the sign of (sai −s

b
i ) and hence are mutually exclusive and exhaustive. They

entail an ordinal case-independence of the utilities of outcomes. If (sai −s
b
i )

is positive, then improving xi leads to additional evidence in favor of a.
We now comment on the empirical measurement of utility, which will

naturally lead to a preference characterization. First, some additional
notation is needed. Let Iab denote the indifference set for acts a and b,
i.e., Iab={x ¥ Rn | a ’x b}. Assume that asikx ¥ Iab and byikx ¥ Iab. Then
the extra evidence in favor of a, obtained when b replaces a, is exactly
offset by the extra evidence obtained by replacing s with y. If a numerical
representation as in (3) exists then

(sai −s
b
i )(u(a)−u(b))=(s

a
k−s

b
k)(u(y)−u(s)). (4)

Assume also that csik y ¥ Iab and dyik y ¥ Iab. Then the extra evidence in
favor of a, obtained by replacing c with d, offsets the same evidence
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(replacing s by y in problem k) as did the replacement of a by b. Substi-
tuting (3) yields

(sai −s
b
i )(u(c)−u(d))=(s

a
k−s

b
k)(u(y)−u(s)). (5)

Because the right-hand sides of (4) and (5) are identical, their left-hand
sides are equal. Assuming nonneutrality of problem i, which implies
sai −s

b
i ] 0, it follows that

u(a)−u(b)=u(c)−u(d). (6)

Hence, equalities of utility differences can be elicited by observations
such as asikx, byikx, csik y, dyik y ¥ Iab. Such elicitations suffice to measure
cardinal utility.

For the representation in (2) to be valid, it is necessary that different
inferences not lead to inconsistencies. Evidence tradeoff consistency, or tra-
deoff consistency for short, holds if

asikx, byikx, csik y, dyik y ¥ Iab and

amjlv, bnjlv, cmjlw, dŒnjlw ¥ Icd
imply dŒ ’ d (7)

whenever i is not neutral with respect to a, b and j is not neutral with
respect to c and d. In other words, if the first quadruple suggests that
u(a)−u(b)=u(c)−u(d) and the second that u(a)−u(b)=u(c)−u(dŒ) then
the outcomes d and dŒ must be equally preferred. Tradeoff consistency is
obviously necessary for the representation (2). In the presence of natural
preference conditions plus continuity, tradeoff consistency also turns out to
be sufficient, i.e., it characterizes (2). The condition entails separability
because the relative attitude toward given outcomes in given cases are
unaffected by what outcomes occurred in other (possibly similar) cases.
Preference continuity holds if the R order topology on R is connected

and for each pair of acts a, b, the set {x ¥ Rn | aRx b} is closed in Rn, where
the latter is endowed with the product topology of the order topology
on R.4

4 The R order topology on R is generated by the sets {a ¥ R | aP b} and {a ¥ R | aO b},
where b ¥ R.

We first present the characterization result for two available acts; two
acts suffice to determine the case-based model and its primitives. The
extension to three or more available acts is more complex and is presented
in Proposition 2.2.

Theorem 2.1. Assume that there are two acts a and b. The following two
statements are equivalent for {Rx | x ¥ Rn}:
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(i) (C1) (Completeness) For every context x, aRx b or bRx a.
(C2) (Preference-based evidence) If xi ’ yi for all i then Rx=Ry.

(C3) (Monotonicity) Every problem is either favorable or neutral or
unfavorable for a vis-a-vis b.

(C4) (Continuity) Preference continuity holds.

(C5) (Richness)

— There are at least three nonneutral problems.

— a and b are equivalent for the context (h, ..., h).
— aP hP b for some outcomes a, b.
— For all problems i that are nonneutral with respect to a, b, and

all contexts x, there exists an outcome a such that a ’aix b (solvability).

(C6) Tradeoff consistency holds.

(ii) There exists a function u: RQ R and for each act a ¥ A and each
problem i there exists a real number sai , such that the following conditions
hold:

(P1) For every context x, aW;n
i=1 s

a
i u(xi) and bW;n

i=1 s
b
i u(xi)

represent the preference relation between a and b.
(P2) u represents R on R.
(P3) u is continuous and its range is R; u(h)=0.
(P4) For at least three problems i, (sai −s

b
i ) is nonzero.

Furthermore, the uniqueness of the similarity weights in (ii) is as in Gilboa
and Schmeidler [5] or the auxiliary theorem in the Appendix below and u is
unique up to a positive scale factor.

The mathematical novelty in this theorem, as compared to Koebberling
and Wakker [10] and other works, is twofold. First, we employ the
context approach. This implies that the objects of choice are different than
in the standard approach. Second, this representation theorem is not
derived assuming a complete product space but a subset thereof. This
subset is different in nature from the subsets studied in the rank-dependent
theories.

Next we present the extension to more than two acts. Without further
conditions, the similarity weights sai in the preceding theorem can depend
on the other available act b, and intransitive preferences can result. Neces-
sary and sufficient conditions to prevent such intransitivities are as yet
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unknown. Some sufficient conditions have been introduced by Gilboa and
Schmeidler [7] and are incorporated next. Conditions (C5’) and (A4’)
hereafter are the plausible but restrictive conditions that remain to be
relaxed.

Proposition 2.2. The following two statements are equivalent for
{Rx | x ¥ Rn}:

(i) Statement (i) of Theorem 2.1 holds (with conditions (C1), (C3),
(C4), and (C5) imposed on all act pairs a, b). Further,

(C1’) Every Rx is transitive (Weak ordering).

(C5’) For all distinct acts a, b, c, d, there exists a context x such that
aPx bPx cPx d (diversity).

(ii) Statement (ii) of Theorem 2.1 holds (with (P1) imposed for all
distinct acts a, b).5 Also,

5 Condition (P1) now means that aW;n
i=1 s

a
i u(xi) represents Rx for each x.

(P4’) For all distinct acts a, b, c, d, the vectors (sa1 −s
b
1, ..., s

a
n −s

b
n),

(sb1−s
c
1, ..., s

b
n−s

c
n), (s

c
1−s

d
1 , ..., s

c
n−s

d
n) are linearly independent.

Furthermore, uniqueness holds as in Theorem 2.1.

3. THE CASE REPETITION APPROACH

The decision maker facing a choice from a set of available (feasible) acts
A has one actual memory M0={(qi, bi, ri) | 1 [ i [ n}. However, we
assume that preferences between acts are given not only for M0, but also
for other memories, which may differ from M0 in two respects. First, we
also consider cases (qi, bi, rj) for j ] i. That is, we require that the decision
maker express preferences also if certain past cases yielded outcomes that
differ from the outcomes they yielded in actuality. Yet, we do not require
the decision maker to imagine outcomes that he or she has never experi-
enced. We only consider recombinations of circumstances that have
actually appeared with outcomes that have actually been experienced.6

6 The techniques and some of the results of this section can be extended to any arbitrary,
finite set of outcomes. Our goal here is to obtain a representation while using as few outcomes
as possible.

Second, we assume that the decision maker can imagine memories in which
these (recombined) cases appear any number of times, including zero.
Thus, for example, President Clinton might have objected to the U.S.
intervention in Bosnia had the militarily successful experiences (from the
United States’ point of view) of the Gulf war and the Noriega capture
never occurred, or had episodes like the Marines’ losses in Lebanon had
occurred many times.
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Notational convention for this section. The lower case letter c, with or
without superscripts or subscripts, denotes cases. The lower case letters a,
b, d, e and f, again with or without superscripts or subscripts, denote acts.

Formally, let M be the set of all possible recombinations: M=
{c=(qi, bi, rj) | 1 [ i, j [ n}. We refer to M as an n×n matrix. The set of
repetitions of cases is J=ZM+={I | I: MQ Z+}, where Z+ denotes the non-
negative integers. For simplicity, we will refer to elements of J as memories.
We assume that for every I ¥ J the decision maker has a binary relation at
least as desirable as RI on the set A. The latter is assumed to be non-empty
and finite. Thus, the relation RI represents the decision maker’s ranking of
acts in the problem p given the memory I. As usual, we define PI and ’I
to be the asymmetric and symmetric parts of RI, respectively. Algebraic
operations on J are performed pointwise.

Comparing the case repetitions framework to the outcomes tradeoffs
framework from a technical point of view, we have two different spaces
representing the decisions contexts. In the previous section it was the
n-dimensional product of a connected topological space, and in this section
we have an n2-dimensional vector space where the coordinates are non-
negative integers i.e., ZM+ . In the previous model there must be infinitely
many outcomes that constitute a connected space in the order topology. In
the present model only finitely many outcomes are allowed, and the inter-
pretation that each outcome has been actually encountered at least once is
made possible.

We would like to obtain a representation of the relation RI for every
I ¥ J. For this purpose we define, for all I ¥ J and a ¥ A:

(‡) UI(a)=;(qi, bi, rj) ¥M I(qi, bi, rj) s
a(qi, bi) u(rj),

and we wish to prove that aRI b iff UI(a) \ UI(b). This constitutes the
extension of Eq. (1) to all I ¥ J, where sa(qi, bi) stands for s((p, a), (qi, bi)).

In view of (‡), if for all I ¥ J, UI( · ): AQ R represents RI, then clearly
the following three axioms holds:

A1:Order. For every I ¥ J, the relation RI, is complete and transitive
on A.

A2:Combination. For every I, J ¥ J and every a, b ¥ A, if aRI b
(aPI b) and aRJ b, then aRI+J b (aPI+J b).

A3:Archimedean axiom. For every I, J ¥ J and every a, b ¥ A, if aPI b,
then there exists k ¥N such that, aPkI+J b.

Are the axioms plausible, independently of their implications? Axiom 1
requires that, given any conceivable memory, the decision maker’s pref-
erence relation over acts is a weak order. Axiom 2 states that if act a is
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preferred to act b given two disjoint memories, a should also be preferred
to b given the combination of these memories. If one data set leads to the
conclusion that a is preferred to b, and the same conclusion follows given
another data set, disjoint from the first, combining the data sets should not
lead to another conclusion. In our setup, combination (or concatenation)
of memories takes the form of adding the number of repetitions of each
case in the two memories. Thus, Axiom 2 requires that preferences obey
additivity with respect to the number of repetitions, i.e., additivity in cases.
One can imagine nonadditivity in cases similarly to nonadditivity in
probabilities.

Axiom 3 is a continuity axiom. It states that if, given memory I, the deci-
sion maker expresses strict preference for act a over b, then, no matter what
his or her preferences are for another memory, J, there is a number of repeti-
tions of I that is large enough to overwhelm the preferences induced by J.
The meaning of this axiom may be clearer if we consider a violation thereof.
Assume that a decision maker has to choose among candidates for a public
office. Memory I contains cases in which candidate a performed well. Given
this memory, a is preferred to b. Memory J contains but a single case in which
candidate a was convicted of embezzlement. It is quite reasonable for a voter
to prefer candidate b to a given memory kI+J for every k. This would reflect
lexicographic preferences for integrity and competence. Axiom A3 rules out
such preferences. It requires that the most hideous crime be forgivable
provided many instances of (even minor) good deeds.

Until now, in A1–A3, we did not require the structural assumption that
cases are decomposable into problems, act, and results. These three axioms
are consistent with the representation formula (‡), where for all a ¥ A and
c=(qi, bi, rj) ¥M, one substitutes sa(qi, bi) u(rj) with the less informative
va(c)=va(qi, bi, rj). In the next two axioms we will use the special structure
of va(c). To state it we need some further notation.

For a vector of non-negative integers L=(l1, ..., ln) ¥ Zn+ and an
outcome r ¥ R={r1, ..., rn}, let L(r) ¥ J be defined by L(r)(qi, bi, r)=li
and L(r)(qi, bi, t)=0 for t ] r. An outcome s is neutral 7 if for every L ¥ Zn+

7 Not to be confused with h of the previous section. Here neutrality is defined and not
assumed.

and every a, b ¥ A, a ’L(s) b. Intuitively, neutral outcomes correspond to a
utility value of zero. If only such outcomes have ever been experienced, no
matter under which circumstances or how many times, there is no reason to
distinguish between any two available acts. We assume that there are non-
neutral outcomes. We can now formulate

A4:Diversity. For every list (a, b, d, e) of distinct elements of A and for
every nonneutral r ¥ R, there exists L ¥ Zn+ such that aPL(r) bPL(r)

dPL(r) e. If |A| < 4, then the same holds for any list of length |A|.
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The diversity axiom is not necessary for the functional form we would
like to derive. While the theorem we present is an equivalence theorem, it
characterizes a more restricted class of preferences than the decision rule
discussed in the introduction, namely those preferences satisfying Axiom 4
as well. The axiom implies that for any four alternatives, there is a memory
that would distinguish among all four of them. It rules out dominated acts:
an act b cannot belong to A if for some act a ¥ A and for all I ¥ J, aPI b.
Thus, we assume that the decision maker cannot know that one act domi-
nates another by some logical deduction. Any preference between a and b
should be based on past experience, and the set of circumstances that have
been encountered is assumed rich enough to induce (via repetitions) pref-
erence for a over b but also vice versa. Similarly, any ranking of four
alternatives is assumed to be possible given an appropriately chosen vector
of repetitions of the circumstances.

Each of the memories used in A4 has only one, nonneutral, outcome.
Intuitively, if for such a memory, say L(r), the decision maker prefers a to
b, it may be because of one of two reasons: either r is a desired outcome
and circumstance (p, a) is more like those in the memory L(r) than is
(p, b), or r is an undesired outcome and (p, b) is more like the circum-
stances in L(r) than is (p, a). The same reasoning applies to Axiom 5.

A5:Case independence of desirability. Assume that two outcomes r and
s are not neutral. Then either

(i) for every L ¥ Zn+ and every a, b ¥ A, aRL(r) b Z aRL(s) b; or
(ii) for every L ¥ Zn+ and every a, b ¥ A, aRL(r) b Z aQL(s) b.

It is quite obvious that A5 is necessary for the desired representation.
This axiom is reminiscent of the state independence axiom in Anscombe
and Aumann’s [1] expected utility model, as presented in Fishburn [3].
Now the main result of this section can be stated.

Theorem 3. Let there be given M0, M and {RI}I ¥ J with J=ZM+ , as
above. Then the following two statements are equivalent if |A| \ 4:

(i) {RI}I ¥ J satisfy A1–A5;
(ii) There are similarity vectors {sa ¥ Rn}a ¥ A and a utility vector

(u(rj))j [ n such that:

(f) ˛ for every I ¥ J and every a, b ¥ A;

aRI b iff UI(a) \ UI(b),

where UI(a)=;(qi, bi, rj) ¥M I((qi, bi, rj)) s
a(qi, bi) u(rj).
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Also, for every list, (a, b, d, e), of distinct elements of A, the convex hull of
the vectors (sa−sb), (sb−sd), and (sd−se) does not intersect Rn− .

Furthermore, in this case, the vectors {sa}a ¥ A and the vector (u(rj))j [ n
are unique in the following sense: if ({sa}a ¥ A, (u(rj))j [ n) and ({ŝa}a ¥ A,
(û(rj))j [ n) both satisfy (f), then there are scalars a, b with ab > 0, and a
matrix w ¥ RM such that for all a ¥ A, ŝa=asa+w, and for all j [ n,
û(rj)=bu(rj).
Finally, in the case |A| < 4, the numerical representation result (as in (f))
holds and uniqueness as above is guaranteed.

The implications of A1–A5 include, in addition to the required represen-
tation, the convex hull condition. This latter condition implies, together
with the representation (ff), the diversity axiom, A4, which, as pointed out
earlier, is not necessary for the representation itself.

Axioms A1–A3 are not new and appeared in Gilboa and Schmeidler
[6, 7]. Similar axioms appeared in Gilboa and Schmeidler [5]. Axiom 4
introduced here is slightly more restrictive than similar axioms in the above
references. For comparison and use in the proof, the weaker version is
stated here:

A4*:Diversity. For every list (a, b, d, e) of distinct elements of A there
exists I ¥ J such that aPI bPI cPI d. If |A| < 4, then for any strict
ordering of the elements of A there exists I ¥ J such that PI is that
ordering.

Extensive discussions of these axioms appear in Gilboa and Schmeidler
[6, 7]. There also appears a basic result which is used in our proof of
Theorem 3.

APPENDIX: PROOFS AND RELATED ANALYSIS

Proof of Theorem 2.1. We first assume (ii) and derive (i). Completeness
is immediate. (C2) follows because equivalent outcomes have the same u
value. For monotonicity note that, because u represents R, sai −s

b
i > 0

implies that problem i is favorable for a vis-a-vis b, sai −s
b
i=0 implies that

problem i is neutral, and sai −s
b
i < 0 implies that problem i is unfavorable.

Note that favorableness, neutrality, and unfavorableness of problem i are
mutually exclusive because of the presence of a neutral context (h, ..., h)
and the existence of outcomes aP hP b.

For continuity, the set of ’ equivalence classes of R is homeomorphic
to the range of u, hence is connected; therefore, so is R. Continuity of u
implies continuity in x of ;n

i=1 (s
a
i −s

b
i ) u(xi), hence the inverse of the

closed subset [0, Q ) of R is also closed. This inverse is {x ¥ Rn | aRx b}.
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Next we consider richness. Given that a and b are equivalent under
context (h, ..., h) and u(a) > u(h), ai(h, ..., h) has a and b not indifferent
whenever (sai −s

b
i ) ] 0. For these problems, replacing the outcome h by the

outcome a has affected the preference between a and b and hence the
belonging problems are nonneutral. Because of (A4), at least three
problems are nonneutral. u(h)=0 and u(a) > u(h) > u(b) for some a and b
imply that all acts are equivalent for context (h, ..., h) and that aP hP b.
Solvability follows because (sai −s

b
i ) ] 0 and u(R)=R.

Tradeoff consistency was derived in Section 2. u(d)=u(dŒ) indeed
implies d ’ dŒ because u represents R . This completes the derivation of the
implication (ii) S (i).

Henceforth, we assume (i) and derive (ii) and the uniqueness results. We
first modify the model so as to have R antisymmetric, i.e., if a ’ b then
a=b. To this effect, define, for any outcomes a, [a] as its ’ -indifference
class, i.e., [a]={b | b ’ a}. For every context x, write [x] for
([x1], ..., [xn]). We can define preference relations R[x] by choosing any
element y ¥ [x] and defining R[x]=Ry; because evidence is preference-
driven (C2), the definition is independent of the particular choice of y. Let
[R] denote the set of indifference classes in R. We can replace R by [R]
while preserving all conditions (C1)–(C6) for R. In particular, the order
topology on [R] is connected and preference continuity holds, and so does
tradeoff consistency. From now on, we write x instead of [x] etc., that is,
we assume that every indifference class in R contains exactly one element.
Proving the result for this modified structure implies the same result for the
original structure.

The following lemma follows from preference continuity by, first,
interchanging the role of a and b and, second, by taking the intersection
{x ¥ Rn | aRx b} 5 {x ¥ Rn | aQx b}.

Lemma 1. {x ¥ Rn | aQx b} and Iab are closed.

We first derive the representation for the contexts in Iab, i.e., we obtain a
representation as in the theorem that is 0 on Iab. There are at least three
nonneutral problems. Assume that problem 1 is nonneutral and assume
that in fact it is favorable. The case of unfavorable problem 1 is analogous.
We will consider Rn−1 for some time; the generic notation for its elements is
xŒ=(x2, ..., xn). Because of solvability, there exists a for each xŒ such that
(a, xŒ) ¥ Iab. Here (a, xŒ) denotes (a, x2, ..., xn). By favorableness of
problem 1 and antisymmetry, the mentioned a is unique. We define the
map V: Rn−1Q R by assigning to each xŒ the mentioned a.
bixŒ denotes the n−1 list xŒ with xi replaced by b. (s, bixŒ) denotes the
n-list (s, x2, ..., xi−1, b, xi+1, ..., xn). V generates a binary relation, denoted
R, on Rn−1 defined by xŒRyŒ if and only if V(xŒ)Q V(yŒ). Thus higher-
preferred values of V correspond to lower-R-preferred elements of Rn−1.
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We say that V anti-represents R and denote by I and P the symmetric and
asymmetric parts of R, respectively. We first show that R can be repre-
sented by a form ;n

j=2 lju(xj). It is obvious that R inherits weak ordering
from R on R

Lemma 2. R satisfies monotonicity, i.e., for all i \ 2:

— If i is favorable for a vis-a-vis b, then aixŒPbixŒ whenever aP b.
— If i is neutral for a vis-a-vis b, then always aixŒIbixŒ.
— If i is unfavorable for a vis-a-vis b, then bixŒPaixŒ whenever aP b.

Proof. Assume that (s, aixŒ) and (y, bixŒ) belong to Iab, where aP b. If
problem i is favorable then, because so is problem 1, sR y and
(y, bixŒ) ¥ Iab would imply aPs, aixŒ b, contradicting (s, aixŒ) ¥ Iab. Hence
sO y must hold, thus V(aixŒ)O V(bixŒ), and aixŒPbixŒ follows.

If problem i is neutral then (s, aixŒ) ¥ Iab implies (s, bixŒ) ¥ Iab, i.e.,
V(aixŒ)=V(bixŒ), and aixŒIbixŒ follows.

The case of unfavorable i is similar to favorable i. Q.E.D.

Lemma 3. V is continuous.

Proof. Let a ¥ R. The set V−1{b ¥ R | bR a} is the projection on Rn−1

of the closed set Iab 5 {x ¥ Rn | x1 R a}, hence is closed again. (Iab is closed
by Lemma 1.) V−1{b ¥ R | bQ a} is similarly closed. Their complements
are open. Because the sets {b ¥ R | bO a} and {b ¥ R | bP a} generate the
topology on R, V is continuous. Q.E.D.

Corollary 4. R is continuous.

R satisfies equivalence-tradeoff consistency if, for any nonneutral
problems i, j, aixŒIci yŒ, bixŒIdi yŒ, and ajvŒIcjwŒ imply bjvŒIdjwŒ.

Lemma 5. R satisfies equivalence-tradeoff consistency.

Proof. We use solvability throughout. The three I relations in the
premise imply that there exist s, y, m such that (s, aixŒ), (s, ci yŒ), (y, bixŒ),
(y, di yŒ), (m, ajvŒ), (m, cjwŒ) ¥ Iab. Take n and dŒ such that also (n, bjvŒ),
(n, d −jwŒ) ¥ Lab. By evidence-tradeoff consistency, dŒ ’ d (so dŒ=d). Hence
(n, djwŒ) ¥ Iab. This and (n, bjvŒ) ¥ Iab imply bjvŒIdjwŒ. Q.E.D.
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The generalized Reidemeister condition is the special case of equivalence-
tradeoff consistency with i=j. It implies the representation in the follow-
ing lemma. Functions Vj, j=2, ..., n, are joint ratio scales if they can be
replaced by functions Wj, j=2, ..., n if and only if there exists a positive s
such thatWj=sVj for all j.

Lemma 6. There exist continuous functions Vj: RQ R, j=2, ..., n, such
that R is represented by ;n

j=2 Vj(xj) and Vj(h)=0 for all j. The Vj-s are joint
ratio scales. For each favorable i, Vi represents R, for each unfavorable i,
−Vi represents R .

Proof. Because at least three problems are nonneutral, and by
Lemma 2, at least two of the problems 2, ..., n are essential (j is essential if
ajxPbjx for some x, a, b). The lemma can now be derived from Wakker
[16, Theorem III.6.6]. Unfortunately, the result needed here is not stated
exactly in the mentioned reference and can only be obtained by combining
several remarks and lemmas, as follows: By Wakker’s Remark III.7.1,
topological separability of R is not needed. Monotonicity (C3) implies
Wakker’s weak separability. For the case where exactly two of the
problems 2, ..., n are nonneutral (so essential), weak separability is equiva-
lent to Wakker’s CI (see his Remark III.7.4), and the generalized
Reidemeister condition is equivalent to Wakker’s Reidemeister condition.
The statement at the end of Wakker’s Theorem III.6.6 now gives the
desired result. For the case of three or more nonneutral problems among
2, ..., n, by Wakker’s Remark III.7.3, his condition CI is only needed with
equivalences instead of preferences and that condition is derived from the
generalized Reidemeister condition exactly as Wakker’s CI derived from his
generalized triple cancellation in Lemma III.6.5.

The uniqueness result follows from Wakker [16, Observation III.6.6’]
and the additional requirement of Vj(h)=0. The results on representation
of R follow from Lemma 2 and antisymmetry. Q.E.D.

Lemma 7. There exist continuous functions Vj: RQ R, j=1, ..., n, such
that [x ¥ Iab S;n

j=1 Vj(xj)=0] and Vj(h)=0 for all j. For each favorable i,
Vi represents R, for each unfavorable i, −Vi represents R . Given all these
restrictions, the Vj-s are joint ratio scales.

Proof. Take the Vj, j=2, ..., n of Lemma 6. Because of solvability, for
each a ¥ R there exists an xŒ such that (a, xŒ) ¥ Iab. For another yŒ such that
(a, yŒ) ¥ Iab also, yŒIxŒ and hence ;n

j=2 Vj(yj)=;n
j=2 Vj(xj). We can

therefore define V1(a)=−;n
j=2 Vj(xj). By continuity and connectedness,

the range of −;n
j=2 Vj(xj) is connected. Because of solvability, for each xŒ

there exists an a such that V1(a)=−;n
j=2 Vj(xj), i.e., V1 has the same range
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as −;n
j=2 Vi(xi) which is therefore also connected. Assume that aP b. We

show that V1(a) > V1(b). Because of solvability we can find xŒ such that
(b, xŒ) ¥ Iab. There is an i > 1 nonneutral, say it is unfavorable (the case of i
favorable is similar). Because of solvability, (a, sixŒ) ¥ Iab for some s.
Because aP b and because of unfavorableness of i, sQ xi would imply
aPa, sixŒ b contradicting (a, sixŒ) ¥ Iab. Hence sP xi. Because −Vi repre-
sents R, Vi(s) < Vi(xi). This, V1(b)+;n

j=2 Vj(xj)=0, and V1(a)+;i−1
j=2 Vj(xj)

+Vi(s)+;n
j=i+1 Vj(xj)=0, imply V1(a) > V1(b). So V1 represents R .

V1 representing R and having a connected range, and R ’s order
topology being connected, imply that V1 is continuous.

To invoke the uniqueness result of Lemma 6, we have to demonstrate
that ;n

j=2 Vj(xj) as in Lemma 7 necessarily represents R, as was the case in
Lemma 6. This is derived from V1 representing R, as follows. Consider xŒ
and yŒ. Then xŒRyŒ holds if and only if V(xŒ)Q V(yŒ), which holds if
and only if V1(V(xŒ)) [ V1(V(yŒ)). Because V1(V(xŒ))+;n

j=2 Vj(xj)=0=
V1(V(yŒ))+;n

j=2 Vj(yj), the inequality of the preceding sentence is equiva-
lent to ;n

j=2 Vj(xj) \;n
j=2 Vj(yj). Hence, indeed, ;n

j=2 Vj(xj) represents R.
V2, ..., Vn uniquely determine V1 and the uniqueness result of Lemma 6

now straightforwardly implies that the Vjs, including V1, are ratio scales.
The requirement that V1 (or, by symmetry, any other Vi for some

nonneutral problem i) represents R was used in the proof to relate the
functions in Lemma 7 to those in Lemma 6.

Lemma 8. Assume that Vj: RQ R, j=1, ..., n, are as in Lemma 7. Then
every nonconstant Vi is proportional to every other nonconstant Vj.

Proof. The proof of this lemma is identical to that of Lemma 11 with
the following substitutions: b for c, a for d,Wj=−Vj. Q.E.D.

Corollary 9. There exists a continuous u: RQ R that represents R,
satisfies u(0)=0, and there exist real numbers lab1 , ..., l

ab
n such that

a ’x bS;n
j=1 l

ab
j u(xj)=0. u is a ratio scale. l

ab
j is positive for each

favorable problem, zero for each neutral problem, and negative for each
unfavorable problem. Q.E.D.

Lemma 10. For the parameters of Corollary 9, the preference between a
and b corresponds with the sign of ;n

j=1 l
ab
j u(xj) (P if positive, ’ if zero,

O if negative).

Proof. Say aPx b. Take a nonneutral i, say i is favorable. By solva-
bility there exists a such that a ’aix b. By favorableness of i, aO xi. We
have ;n

j=1 l
ab
j u(xj) >;i−1

j=1 l
ab
j u(xj)+l

ab
i u(a)+;n

j=i+1 l
ab
j u(xj)=0. Similarly,

aOx b implies ;n
j=1 l

ab
j u(xj) < 0. These implications and Corollary 9 prove

the lemma. Q.E.D.
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Solvability readily implies that u is unbounded from both sides. (If u
were bounded, say from above, then we could take, for instance, a (say)
favorable, i for a vis-a-vis b, and a with u(a) very close to the supremum,
and then x with xi=a and ;n

j=1 l
ab
j u(xj) so negative (possible due to

solvability), that no b would exist such that a ’bix b.)
We can now define sai arbitrary and sbi=s

a
i −l

ab
j , for all j and the proof

of Theorem 2.1 is complete. Q.E.D.

Proof of Proposition 2.2. For the implication (i) S (ii), diversity (C5’)
follows mainly from (P4’) as in Gilboa and Schmeidler [5]; the rest follows
as in Theorem 2.1. Next we assume (ii) and derive (i). Again, the proof
closely follows the proof of Theorem 2.1. Lemmas and Corollaries 1–7 now
hold true for each distinct pair of acts a, b. To prove that the utility u does
not depend on the acts a, b, we generalize Lemma 8 as follows.

Lemma 11. Assume that Vj: RQ R, j=1, ..., n, are as in Lemma 7.
Assume that Wj: RQ R, j=1, ..., n are similar functions, only for acts c ] d
that are possibly different from a, b. Then every nonconstant Vi is proportio-
nal to every nonconstantWj.

Proof. Assume that problem i is nonneutral for a vis-a-vis b and
problem j is nonneutral for c vis-a-vis d. Take any a, b, c, d such that
Vi(a)−Vi(b)=Vi(c)−Vi(d). Because there is a nonneutral problem k, k ] i,
for a vis-a-vis b, and because of solvability, asikx ¥ Iab for some x, s.
Because k is nonneutral, we can also find y such that byikx ¥ Iab. It follows
that Vi(a)−Vi(b)=Vk(y)−Vk(s). Because there is a nonneutral problem,
other than i or k, y can be found such that csik y ¥ Iab. Substituting
Vi(c)−Vi(d)=Vi(a)−Vi(b)=Vk(y)−Vk(s) implies that also dyik y ¥ Iab.

Because there is a nonneutral problem l, l ] j, for c vis-a-vis d, and
because of solvability, amjlv ¥ Icd for some v, m. Because l is nonneutral, we
can also find n such that bnjlv ¥ Icd. It follows that Wj(a)−Wj(b)=
Wl(n)−Wl(m). Because there is a nonneutral problem, other than j or l, w
can be found such that cmjlw ¥ Icd. We can also find dŒ such that dŒnjlw ¥ Icd.
Evidence tradeoff consistency now implies d ’ dŒ (hence, by antisymmetry,
d=dŒ) implying dnjlw ¥ Icd. This and cmjlw ¥ Icd implies Wl(n)−Wl(m)=
Wj(c)−Wj(d) which is therefore equal toWj(a)−Wj(b).

We have demonstrated that Vi(a)−Vi(b)=Vi(c)−Vi(d) implies Wj(a)−
Wj(b)=Wj(c)−Wj(d). These functions being continuous on a connected
domain implies that they are related by an affine transformation. They are all
0 at h, hence they are related by a positive or negative scale factor. Q.E.D.

Corollary 9 and Lemma 10 remain valid for all a, b where u can be taken
independent of a and b due to Lemma 11.
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At this stage, we can map the structure into a structure that satisfies all
conditions of Gilboa and Schmeidler [5, the Theorem] by replacing all
outcomes by their u values. Then all axioms of their theorem are satisfied
and the rest of Proposition 2.2 follows from their theorem. Q.E.D.

Proof of Theorem 3. We first quote Theorem 3.1 from Gilboa and
Schmeidler [6] or the main theorem from Gilboa and Schmeidler [7]
which is used here as an

Auxiliary theorem. Let there be given a finite, nonempty set K and for
every I ¥ J=ZK+ let R … A×A. Then the following two statements are
equivalent if |A| \ 4:

(i) {RI}I ¥ J satisfy A1–A3 and A4*;
(ii) There are vectors {va ¥ RK}a ¥ A such that:

(ff)
for every I ¥ J and every a, b ¥ A,

aRI b iff C
c ¥K
I(c) va(c) \ C

c ¥K
I(c) vb(c),

and, for every list (a, b, d, e) of distinct elements of A, the convex hull of the
vectors (va−vb), (vb−vd) and (vd−ve) does not intersect RK− .

Furthermore, in this case the vectors {va}a ¥ A are unique in the following
sense: {va}a ¥ A and {v̂a}a ¥ A both satisfy (ff), iff there are a scalar a > 0 and a
vector w ¥ RK such that for all a ¥ A, v̂a=ava+w.
Finally, in the case |A| < 4, the numerical representation result (as in (ff))
holds and uniqueness as above is guaranteed.

We start with (i) implies (ii). By the same implication in the auxiliary
theorem with K=M, one has for every a ¥ A an array va ¥ RM such that
(ff) holds. Using A5 we will show that (f) of Theorem 3 holds too. That is,
we have to show that there is an n-lists (u(rj))j [ n and for every a ¥ A there
is an n-list, (sa(qi, bi))i [ n, such that for all c=(qi, bi, rj) ¥M and
a ¥ A : va((qi, bi, rj))=sa(qi, bi) u(rj).

For concreteness, choose an act e ¥ A and set, without loss of generality,
ve=0. Given this convention, {va}a ¥ A are unique up to multiplication by a
positive constant.

For every neutral outcome r ¥ R={r1, ..., rn}, define u(r)=0.
Let r̄ ¥ R be an arbitrary, but fixed from now on, nonneutral outcome.

Define u(r̄)=1, and for every a ¥ A and every i [ n, define sa(qi, bi)=
va(qi, bi, r̄ ). Suppose that there is another nonneutral outcome, say t, such
that condition (i) of A5 holds for r̄ and t. Then for every L ¥ Zn+,
RL(r)=RL(t). We will show
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Lemma 12. There is l > 0 such that for every a ¥ A and every i [ n,
va((qi, bi, t))=lva((qi, bi, r̄ )).

Proof. Once again we apply the auxiliary theorem, this time for
K={(q1, b1, r̄ ), (q2, b2, r̄ ), ..., (qn, bn, r̄)}. For simplicity we write Zn+ for
ZK+. Then for every L ¥ Zn+ define RL=RL(r̄).

For any r ¥ {r1, ..., rn}=R denote J(r)={I ¥ J | I(qi, bi, rŒ)=0 for
rŒ ] r}.

Since A1–A3 of part (i) of Theorem 3 hold when restricted to J(r̄), and
A4 was stated so that A4* holds for J(r̄), part (ii) of the auxiliary theorem
as well as the uniqueness hold. Note that, for all L ¥ Zn+, the matrices
va ¥ RM, (a ¥ A) represent RL(r̄). Hence, the same matrices truncated to
their r̄ ’s columns, (va(qi, bi, r̄ ))i [ n ¥ Rn, (a ¥ A) represent RL (=RL(r̄)).

Substituting t for r̄ in the paragraph above results in the symmetric
conclusion, i.e., the vectors (va(qi, bi, t))i [ n ¥ Rn, (a ¥ A) represent RL

(=RL(t)). Uniqueness and the normalization, ve=0, imply the assertion in
the lemma. Q.E.D.

We now can define u(s)=l. Similarly, applying Lemma 12 we define
u(r) for every other nonneutral r ¥ R such that condition (i) of A5 holds for
r̄ and r. If for some nonneutral t ¥ R condition (ii) of A5 holds for r̄ and t,
then for every L ¥ Zn+, QL(t)=RL(r̄). Thus (−va(qi, bi, t))i [ n ¥ Rn, (a ¥ A)
represent RL(r̄), and again Lemma 12 guarantees existence of some h > 0
such that −va((qi, bi, t))=hva((qi, bi, r̄ )) for every a ¥ A and every i [ n.
Defining u(t)=−h and continuing in this way for any other nonneutral
outcome will complete the construction of the required vector of utilities,
(u(rj))j [ n, as in (ii) of Theorem 3.

To complete the proof of (ii) we have to show that for every list,
(a, b, d, e), of distinct elements of A, the convex hull of the vectors (sa−sb),
(sb−sd) and (sd−se) does not intersect Rn− . But since sa(qi, bi)=
va(qi, bi, r̄ ) for all i and a, it has been shown in the proof of Lemma 12.

The opposite direction, that (ii) implies (i) is immediate. Note that r ¥ R
is neutral iff u(r)=0, condition (i) of A5 holds iff u(r) > 0, and condition
(ii) of A5 holds iff u(r) < 0. Furthermore, to prove that (ii) implies A4, the
auxiliary theorem has to be used with K={(q1, b1, r), (q2, b2, r), ...,
(qn, bn, r)}, for every nonneutral r ¥ R. The remainder of the claims in
Theorem 3 are proved in the same way. Q.E.D.
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