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a b s t r a c t

Assume we are asked to predict a real-valued variable yt based on certain characteristics xt = (x1t ,
. . . , xdt ), and on a database consisting of (x1i , . . . , x

d
i , yi) for i = 1, . . . , n. Analogical reasoning suggests

to combine past observations of x and y with the current values of x to generate an assessment of y by
similarity-weighted averaging. Specifically, the predicted value of y, yst , is the weighted average of all pre-
viously observed values yi, where the weight of yi, for every i = 1, . . . , n, is the similarity between the
vector x1t , . . . , x

d
t , associated with yt , and the previously observed vector, x1i , . . . , x

d
i . The ‘‘empirical sim-

ilarity’’ approach suggests estimation of the similarity function from past data. We discuss this approach
as a statistical method of prediction, study its relationship to the statistical literature, and extend it to the
estimation of probabilities and of density functions.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Reasoning by analogies is a basic method of predicting future
events based on past experience. Hume (1748), who famously
questioned the logical validity of inductive reasoning, also argued
that analogical reasoning is the fundamental tool by which we
learn from the past about the future. Analogical reasoning has
been widely studied in psychology and artificial intelligence (see
Schank, 1986; Riesbeck and Schank, 1989), and it is very common
in everyday discussions of political and economic issues. Further-
more, it is a standard approach to teaching in various professional
domains such as medicine, law, and business. However, analogical
reasoning has not been explicitly applied to statistics. The goal of
this paper is to present an analogy-based statistical method, and to
explore its relationships to existing statistical techniques.

Suppose that we are trying to assess the value of a variable
yt based on the values of relevant variables, xt = (x1t , . . . , x

d
t ),

and on a database consisting of the variables (x1i , . . . , x
d
i , yi) for
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i = 1, . . . , n. For example, yt may be the price of an antique piece
of furniture, where xt denotes certain characteristics thereof, such
as its style, period, size, and so forth. Alternatively, yt may be an
indicator variable, denoting whether a PhD candidate completes
her studies successfully, where xt specifies what is known about
the candidate at the time of admission, including such variables
as GRE and GPE scores, the ranking of the college from which the
candidate graduated, etc.

How should we combine past observations of x and y with
the current values of x to generate an assessment of y? If we
were to follow Hume’s idea, we would need a notion of similarity,
indicating which past conditions xi = (x1i , . . . , x

d
i ) were more

similar and which xi’s were less similar to xt . Wewould like to give
the observations thatwere obtained undermore similar conditions
a higher weight in the prediction of yt than those who were
obtained under less similar conditions. In the examples above, it
makes sense to assess the price of an antique by the price of other,
similar antiques that have recently been sold. Moreover, the more
similar is a previous observation to the current one – in terms of
style, period, size, and even time of sale – the greater is the weight
wewould like to put on this observation in the current assessment.
Similarly, in assessing the probability of success of a PhD candidate,
it seems desirable to put more weight on the observed outcomes
involvingmore similar candidates as compared to less similar ones.

In attempting to let previous cases matter for a current predic-
tion problem, but to do so in varying degrees, a similarity-weighted
average is arguably the most natural formula. Formally, one may
assume that there is a similarity function s : Rd

× Rd
→ R++ =

0304-4076/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
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(0,∞) such that, given a database (xi, yi)i≤n and a new data point
xt = (x1t , . . . , x

d
t ) ∈ Rd, the similarity-based predictor of yt is

yst =

∑
i≤n

s(xi, xt)yi∑
i≤n

s(xi, xt)
. (1)

Observe that, in the case when all similarity values are constant,
this formula boils down to a simple average of past observations.
The sample average is arguably the most basic and most widely
used statistic. As such, the formula (1) appears to be a minor vari-
ation on the averaging principle. Rather than a simple average, we
suggest using a weighted one, where the weights reflect the rele-
vant similarity. If we consider a limiting case where the function s
is the indicator s∗(xi, xt) = 1 if xi = xt and s∗(xi, xt) = 0 other-
wise, (1) becomes the conditional sample average of y, given that
x = xt . Thus, (1) may be viewed as a continuous family of formulae
spanning the range between the conditional and the unconditional
average of past observations.

However, formula (1) is not the only way to simultaneously
generalize averaging and conditional averaging. Is it more or less
reasonable than others? What properties does it have? Such ques-
tions call for an axiomatic treatment.

Gilboa and Schmeidler (1995, 2001) suggested an axiomatic
theory of case-based decision making. Gilboa and Schmeidler
(2003) specialized the general theory to prediction problems. Their
approach studies the way that possible predictions are ranked, as a
function of the database of given observations. A key axiom in this
paper is the so-called combination axiom, stating that a ranking
that follows from two disjoint databases should also follow from
their union. The main result uses the combination axiom, coupled
with a fewother axioms, to characterize a general prediction rule. It
turns out that several statistical techniques are special cases of this
general rule. In particular, kernel estimation of a density function,
kernel classification, andmaximum likelihood estimation are such
special cases.

The axiomatic approach to statistical problems allows one to
study the properties that characterize various techniques, to ask
how reasonable these techniques are, and to find similarities be-
tween them. For example, Gilboa and Schmeidler (2003) discuss
the combination axiom and attempt to come up with general
guidelines for the classification of applications in which it may
be reasonable. Such a discussion may enrich our understanding of
the statistical techniques that satisfy this axiom. Moreover, the ax-
iomatic treatment exposes similarities that may not be otherwise
obvious, such as the similarity between kernel classification and
maximum likelihood estimation. At the same time, the axiomatic
analysis also makes it easier to come up with ‘‘counter-examples’’,
that is, with situations in which axioms are implausible, thereby
delineating the scope of applicability of various techniques. In par-
ticular, the combination axiom appears less compelling for time
series than it is for cross-sectional datasets. Correspondingly, ap-
plying formula (1) where t denotes time may be inappropriate.1
We maintain that the axiomatic approach may benefit statistical
theory in general, because axioms may be viewed as criteria for
the evaluation of statistical techniques in finite samples.

Applying the axiomatic approach to the problem at hand,
Gilboa, Lieberman, and Schmeidler (GLS, 2006) axiomatized for-
mula (1) for the case that y is a real-valued variable, while Billot,
Gilboa, Samet, and Schmeidler (BGSS, 2005) axiomatized it for the
case that y is a multi-dimensional probability vector. These papers
do not assume that the similarity function is given. Rather, they

1 In GLS (2006) we suggest that time series may be analyzed by defining
similarities over patterns, or subsequences of observations.

consider a certain observable measure – such as a likelihood or-
dering or a probability assessment – and ask how this observable
measure varies with the database that is the input to the problem.
The axiomatizations impose certain constraints on theway the ob-
servable measure varies with the input database, and prove that
the constraints are satisfied if and only if there exists a similarity
function such that (1) holds.

The formula (1) may be used with any function s : Rd
× Rd

→

R++. Which function should we choose? GLS (2006) suggest ob-
taining the similarity function from the data, selecting the func-
tion s that best fits the data. The notion of ‘‘best fit’’ can be defined
within a statistical model or otherwise. A non-statistical approach,
often used in machine learning, does not specify a data generating
process (DGP). Rather, it selects a best-fit criterion such asminimal
sum of squared errors. Alternatively, the formula (1) can be em-
bedded within a statistical model, parametric or non-parametric.
In either case, the optimal s is computed from the data. (See details
in Section 2 below.)

The right-hand side of formula (1) is mathematically equivalent
to a kernel estimator of a non-parametric function, where the
similarity function plays the role of the kernel. Thus, the axiomatic
derivations of this formula in GLS (2006) and BGSS (2005) may
be viewed as axiomatizing kernel-based non-parametric methods.
If one takes GLS (2006) and BGSS (2005) as a descriptive model
of human reasoning, one might argue that the Nadaraya–Watson
estimator of an unknown function coincides with the way the
human mind has evolved to predict variables. Indeed, since the
human mind is supposed to be a general inference tool, capable of
making predictions in unknown environments, it stands to reason
that it solves a non-parametric statistical prediction problem.

The main contributions of the present paper are to relate the
empirical similarity approach to the statistical literature, and to
extend it to the problem of density estimation, where the density
of a variable yt is assumed to depend on observable variables xt =

(x1t , . . . , x
d
t ).

Section 2 describes the empirical similarity statistical models.
We devote Section 3 to a more detailed discussion of the relation-
ship between kernel-based estimation and empirical similarity.
We then briefly discuss the relationship of our method to spatial
models in Section 4. Section 5 discusses the case of a binary random
variable. In Section 6 we apply our method to the non-parametric
estimation of a density function, and provide an axiomatization of
a ‘‘double-kernel’’ estimation method. Finally, Section 7 concludes
with a discussion of additional directions for future research.

2. Empirical similarity models

Which function s : Rd
× Rd

→ R++ best explains the database
(xi, yi)i≤n? This question, which may or may not be couched in
a statistical model, would take a different form depending on
whether the data are naturally ordered. If they are, such that for
every i > j, (xi, yi)was realized after (xj, yj), it is natural to consider
the similarity-based predictor of yi, for a given s, to be

ysi =

∑
j<i

s(xj, xi)yj∑
j<i

s(xj, xi)
. (2)

If, however, the order of the datapoints in (xi, yi)i≤n is arbitrary,
it is more natural to define

ysi =

∑
j≠i

s(xj, xi)yj∑
j≠i

s(xj, xi)
. (3)

In either case, the choice of the function s may be guided
partly by theoretical considerations. Billot et al. (2008) provide
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conditions on similarity-weighted averages that are equivalent to
the similarity function taking the form

s(x, x′) = exp(−
x − x′

)
where ‖·‖ is a normonRd. For concreteness, we focus on the family
of norms defined by weighted Euclidean distances.

sw

x, x′


= exp


−dw(x, x′)


where w ∈ Rd

+
is a weight vector such that the distance between

two vectors x, x′
∈ Rd is given by

dw

x, x′


=

d−
j=1

wj

xj − x′

j

2
. (4)

Thus, the similarity function is known up to a d-dimensional
vector of parameters, one for each predictor.

In order to conduct statistical inference and to obtain qualitative
results by hypotheses tests, onemay embed Eqs. (2) and (3) within
a statistical model, namely

yt =

∑
i<t

sw(xi, xt)yi∑
i<t

sw(xi, xt)
+ εt , (5)

and

yt =

∑
i≠t

sw(xi, xt)yi∑
i≠t

sw(xi, xt)
+ εt , (6)

respectively, where {εt} are iid

0, σ 2


.

Model (5) can be interpreted as an explicit causal model. Con-
sider, for example, a process of price formation by case-based eco-
nomic agents. These agents determine the prices of unique goods
such as apartments or art pieces according to the similarity of these
goods to other goods, whose prices have already been determined
in the past.2 Thus, (5) can be thought of as a model of the mental
process that economic agents engage in when determining prices.
The estimation of sw in such amodel is thus an estimation of a sim-
ilarity function that presumably causally determines the observed
y’s. The asymptotic theory for this model was developed by Lieber-
man (in press).

Model (6) cannot be directly interpreted in the same way. Be-
cause the distribution of each yt depends on all the other yi’s, (6)
cannot be a temporal account of the evolution of the process. How-
ever, such interdependenciesmay be quite natural in geographical,
sociological, or political data, as is common in spatial statistics (see
Section 4 below).

Both models (5) and (6) assume that the similarity function is
fixed and does not change with the realizations of yt , nor with t
itself. They rely on the axiomatizations in GLS (2006) and in BGSS
(2005). Each of these axiomatizations, like Gilboa and Schmeidler
(2001, 2003), uses a so-called ‘‘combination’’ (or ‘‘concatenation’’)
axiom.3 Whereas axioms of this type may appear reasonable at
first, they are rather restrictive. Gilboa and Schmeidler (2003) con-
tains an extensive discussion of such an axiom and its limitations,
and the latter apply to all versions of the axiom, including those
that appear in GLS (2006) and in BGSS (2005). For our purposes, it
is important to note that the combination axiomdoes not allowone
to learn the similarity function from the data. Correspondingly, for-
mula (1) does not allow the similarity function to change with the

2 See Gayer et al. (2007).
3 A variant of this axiom is also used in the axiomatization in Section 6.

accumulation of data. But the basic idea of ‘‘empirical similarity’’ is
precisely this, namely, that the similarity function be learnt from
the same data that are used, in conjunction with this similarity
function, for generating predictions. Hence, the axiomatic deriva-
tions mentioned above are limited. Similarly, formula (1) calls for
a generalization that would allow it to refine the similarity assess-
ment, and the statistical models (5) and (6) should be accordingly
generalized.

3. Empirical similarity and kernel-based methods

For clarity of exposition, we start with the unidimensional case,
that is, when d = 1 and there is only one explanatory variable X .
A nonparametric regressionmodel assumes a DGP of the following
type:

yi = m (xi)+ εi, (i = 1, . . . , n) , (7)
εi ∼ iid


0, σ 2 ,

where xi is a scalar and m : R → R is the unknown function
relating x to y. A widely used nonparametric estimator of m (·) is
the Nadaraya–Watson estimator, defined as

m̂ (xt) =

n∑
i=1

K
 xi−xt

h


yi

n∑
i=1

K
 xi−xt

h

 , (8)

where K (x) is a kernel function, that is, a non-negative function
satisfying


K (z) dz = 1, as well as other regularity conditions,

and h is a bandwidth parameter. For instance, if we choose the
Gaussian kernel, then

1
h
K


xi − xt

h


=


2πh2−1/2

exp


−
(xi − xt)2

2h2


. (9)

The choice of h is central in the nonparametric literature, because
there is a trade-off between variance and bias. One of the most
common criteria for the selection of an optimal bandwidth is to
minimize the mean integrated squared error (MISE). That is, the
optimal h satisfies

h∗
= argmin

h
Ef0

∫ 
m̂ (x)− m (x)

2 dx, (10)

where the expectation is taken under the true density f0 of y. If
x is countable and m (x) is replaced by y, then we end up with a
minimum expected sum of squared errors criterion.

We now turn to discuss the connection between kernel-based
estimation and empirical similarity. As described above, the em-
pirical similarity method suggests predicting yt by

yt =

n∑
i=1

sw (xi, xt) yi

n∑
i=1

sw (xi, xt)
,

where

sw (xi, xt) = exp (−dw)

= (π/w)1/2

 1
1/

√
2w

K


xi − xt
1/

√
2w

 ,
dw was defined in (4), and K is given in (9). Then,
n∑

i=1
sw (xi, xt) yi

n∑
i=1

sw (xi, xt)
=

n∑
i=1

K


xi−xt
1/

√
2w


yi

n∑
i=1

K


xi−xt
1/

√
2w

 .
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It follows that, in this setting,

h = 1/
√
2w.

Thus, we have a direct mapping from the similarity parameter to
the bandwidth parameter. Among other things, we can set w∗ to
satisfy the MISE criterion.

Despite the similarity between kernel-based estimation and
empirical similarity, there is a fundamental difference between
them. The former is a statistical technique that is used, among
other things, for the estimation ofmodel (7). By contrast, inmodels
(5) and (6) we use the formula (1) as part of the DGP itself.

This difference is accentuated when we focus on the ordered
case. We can rewrite model (5) as

yj = m̂w
(j−1)


xj

+ εj, (j = 2, . . . , n) , (11)

where m̂w
(j−1)


xj

is defined as in (8), restricted to the observations

that precede j, namely

m̂w
(j−1)


xj


=

j−1∑
i=1

sw

xi, xj


yi

j−1∑
i=1

sw

xi, xj

 . (12)

Model (7) assumes that the distribution of yt is a function of xt
alone. If the functionmwere known, the best predictor of yt given
xt would have been m(xt), independent of previous realizations of
x and of y. In otherwords,model (7) specifies a rule,m, relating xt to
yt . This is not the case for model (5). In this model, the DGP is case
based, where the distribution of yt depends on all past and present
realizations of x, as well as all past realizations of y.

Observe that this difference also has an implication regarding
the type of questions that are raised about the parameters w or h.
In (7), the parameter h is chosen optimally, so as to minimize an
expected loss function. It has a purely statistical purpose and
meaning. But in (5) and (6), w has a model meaning. Similar to a
regression parameter, w may have an economic, psychological, or
other substantial meaning having to do with the interpretation of
the model. Indeed, in GLS we develop tests for hypotheses of the
form4

H0 : w = 0.

That is, in thismodel ‘‘What is the true value ofw?’’ is ameaningful
question, whereas in (7) one may only ask ‘‘What is a useful value
of h?’’.

Despite these differences, the mathematical connections estab-
lished above suggest that onemay also use the empirical similarity
approach to predict the value of y even though, in reality, the true
DGP is (7). One would then expect the empirical similarity func-
tion to become ‘‘tighter’’ with an increase in the database size. To
consider an extreme example, assume that a database is replicated
in precisely the same way a large number of times. For every past
observation (xi, yi) there will be many identical observations, and
the similarity function that best explains existing data will be one
with infinitew, that is, a similarity function that ignores all but the
identical x values.5

4 Under the hypothesis that w = 0, Sw

xi, xj


= 1 for all i and j. This suggests

that y is not influenced by x— past values of y are relevant to its current evaluation
irrespective of the x values that were associatedwith them.Mathematically, setting
w = 0 yields the same prediction as using a kernel approach with h = ∞, where
for every x, y is evaluated by a simple average of all past y’s.
5 In fact, two replications would suffice for the above argument. But a large

number of replications would have a similar impact even if the database is not
replicated in precisely the same way.

The discussion above generalizes to higher dimensions (d > 1)
without any fundamental modifications. Kernel estimation is used
for estimation of a non-parametric model (7) where x is multi-
dimensional, and the models (5) and (6) have also been formu-
lated for a multi-dimensional x. Indeed, similar relationships exist
between the kernel bandwidth parameters and the weights that
determine the similarity function. Specifically, we may specify

sw (xi, xt) = exp (−dw)

= (2π)d/2 (det (W ))1/2

(det (W ))−1/2 K (xi − xt;W )


, (13)

where W−1 is a diagonal matrix with elements 2wj, j = 1, . . . , d,
and the term in the square brackets of (13) integrates to one. In this
setting
n∑

i=1
sw (xi, xt) yi

n∑
i=1

sw (xi, xt)
=

n∑
i=1

K (xi − xt;W ) yi

n∑
i=1

K (xi − xt;W )
,

where the jth bandwidth hj is equal to 1/

2wj.

The bulk of the literature on multivariate kernels focuses only
on one bandwidth parameter, but there is no conceptual difficulty
in optimizing a multi-dimensional bandwidth. This, indeed, has
been discussed by Yang and Tchernig (1999). As in the univariate
case, we find the same conceptual differences between the empir-
ical similarity model and kernel estimation. In particular, the em-
pirical similarity model allows one to test hypotheses of the form

H0 : wj = 0

suggesting that variable xj is immaterial in similarity judgments.
Rejecting such a hypothesis constitutes a statistical proof that the
variable xj matters for the assessment of y. By contrast, a kernel
function that is not part of the DGP does not render itself to the
testing of similar qualitative hypotheses.

4. Empirical similarity and spatial models

The general spatial model can be written in at least two ways,
in each case leading to a different likelihood. Besag (1974, p. 201;
see also Cressie, 1993) describes the two possibilities. First, the
conditional density of yi given y−i = (y1, . . . , yi−1, yi+1, . . . , yn)
is specified as

pi (yi|y−i) =

2πσ 2−1/2

× exp

−
1

2σ 2


yi − µi −

−
j≠i

βi,j

yj − µj

2
 .

This results in the following joint density of y = (y1, . . . , yn):

p (y) =

2πσ 2−n/2

|B|1/2 exp
[
−

1
2σ 2 (y − µ)′ B (y − µ)

]
,

where [B]i,i = 1, [B]i,j = [B]j,i = −βij and B is positive definite.
Alternatively, one can assume that

E (yi|y−i) = µi +
−
j≠i

βi,j

yj − µj


.

For example, this holds for the model

yi = µi +
−
j≠i

βi,j

yj − µj


+ εi,

where ε1, . . . , εn are iid normal variables with zero mean and
variance σ 2. In this case the joint density is

p (y) =

2πσ 2−n/2

|B| exp
[
−

1
2σ 2 (y − µ)′ B′B (y − µ)

]
. (14)
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It is required that B is positive definite. Note that if we define

[B]i,j = −
sw(xi, xj)∑

j≠i
sw(xi, xj)

,

then (14) is the joint density of y in the similarity model (6). This
model is also entitled conditional autoregression (or CAR).

These spatial models resemble models (5) and (6). The latter
may appear more restrictive than the spatial model, because the
similarity function sw specifies a particular functional form for
the coefficients βi,j (and, in (5), there are additional constraints
that βi,j = 0 for i < j). However, in most spatial applica-
tions (e.g., Anselin, 1988) the βi,j’s are taken to be fixed and given
whereas in models (5) and (6) the coefficients are not assumed
known. Rather, they are functions of the x’s and thew’s and there-
fore, they are ultimately estimated from the data.

5. Probability estimation

GLS (2006) also propose using the empirical similarity approach
for the estimation of probabilities. Such probabilities may be used
in a decision problem, employing expected utility maximization
or some other decision procedure that is probability based, such
as median-utility maximization. Our focus at this point is on
probabilities per se.

In this context, consider yt ∈ {0, 1}, as in the example of success
in a PhD program mentioned above. GLS develop the likelihood
function for the ordered model, in which the probability that
yt = 1 depends only on past observations, yi for i < t , and this
probability is taken to be the similarity-weighted average of these
past observations, namely, the similarity-weighted frequency of
1’s in the past6:

psw (yt = 1|x1, . . . , xt , y1, . . . , yt−1) =

∑
i<t

sw (xi, xt) yi∑
i<t

sw (xi, xt)
. (15)

However, there are many applications in which the given data
are not ordered in any natural way. In this case, one may assume
that the probability that each data point yt , t = 1, . . . , n, equals 1
is given by

psw (yt = 1|x1, . . . , xn, y1, . . . , yt−1, yt+1, . . . , yn)

=

∑
i≠t

sw (xi, xt) yi∑
i≠t

sw (xi, xt)
. (16)

If p (yi) = p for all i, then psw (yt = 1|·) is evidently unbiased for p.
To estimate w, we can use the idea of likelihood cross-validation,
as follows. First, we define

psw,−i (yi = 1|x1, . . . , xn, y1, . . . , yi−1, yi+1, . . . , yn)

=

∑
j≠i

sw

xj, xi


yj∑

j≠i
sw


xj, xi

 ,

6 GLS also allow the probability to depend on this similarity-weighted frequency
in a monotone way. The more specific assumption, namely, that the similarity-
weighted frequency is the probability, suggests an interpretation of ‘‘probability’’
that generalizes the frequentist definition, while retaining its intuitive appeal.
However, this model cannot describe how the process starts and generates both
0’s and 1’s.

for i, j = 1, . . . , n, which is the leave-yi-out cross-validation first
step. At the second stage of the procedure we obtain

ŵCV = argmax
w

n−
i=1

log

psw,−i (yi = 1|x1, . . . , xn, y1, . . . , yi−1, yi+1, . . . , yn)


.

Finally, for a new data point t = n + 1, we estimate (15) by

p̂ŵCV (yt = 1|x1, . . . , xn, xt , y1, . . . , yn) =

n∑
i=1

sŵCV (xi, xt) yi

n∑
i=1

sŵCV (xi, xt)
.

Note the difference between this procedure and the one discussed
in Silverman (1986, pp. 126–127). In our notation, Silverman’s
equation (6.7) reduces to

p̂ (yt = 1) =
λ

n

n−
i=1


1 − λ

λ

(yi−yt )2

, (17)

where λ is a parameter, assumed to lie in [1/2, 1], to be estimated
by likelihood cross-validation. That is,

λ̂CV = argmax
λ

n−
i=1

log

p̂−i (yi = 1)


with

p̂−i (yi = 1) =
λ

n

−
j≠i


1 − λ

λ

(yj−yi)
2

.

Unlike the case of nonparametric estimation of m (x) with un-
ordered data, it is not apparent how we can map λ into w. Also,
with the ‘‘right’’ choice of sw it might be possible to find a
similarity-based predicted probability which outperforms (17) in
terms of the sum of squared errors.

6. Double kernel density estimation

Suppose that one wishes to estimate the density function of a
real-valued variable y, where this density is assumed to depend on
the values of other real-valued variables x = (x1, . . . , xd). Assume
that the jth past observation is a vector (x1j , . . . , x

d
j , yj) ∈ Rd+1,

j = 1, . . . , t − 1. A new datapoint xt ∈ Rd is given. How should we
estimate the density of y given xt?

Kernel estimation of a density function is a well-known and
widely used technique for the case in which there are no explana-
tory variables x1, . . . , xd. (See Akaike, 1954; Rosenblatt, 1956;
Parzen, 1962; Silverman, 1986; Scott, 1992.) It is therefore a nat-
ural candidate for a starting point. One can therefore ask a more
concrete question: How canwe generalize kernel estimation to the
current problem, inwhich the density of y is assumed to depend on
the realization of the variables x1, . . . , xd?

Gilboa and Schmeidler (2003) used a ‘‘combination’’ axiom to
derive kernel estimation of a density function for the standard
case, in which there are no explanatory variables. As mentioned
above, variants of this combination axiom are at the heart of the
derivation of the similarity-weighted averages in BGSS (2005) and
GLS (2006). It therefore appears coherent to estimate the density
of y by a kernel method, but to allow the kernel to depend on
the explanatory variables x1, . . . , xd in a way that resembles the
similarity-weighted average used above.

Specifically, assume that there exists a function s : Rd
× Rd

→

R++, where s(xt , xj) measures the degree to which data point
xt ∈ Rd is similar to data point xj ∈ Rd, and a kernel function
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K : R → R+, i.e., a symmetric density function which is non-
increasing on R+. For a database


(x1j , . . . , x

d
j , yj)


j<t

, consider the
following formula:

ft(y) =

∑
j<t

s(xj, xt)K(y − yj)∑
j<t

s(xj, xt)
. (18)

This formula is an (s-)similarity-weighted average of the kernel
functions K(yj − y). Thus, each observation yj is thought of as
inducing a density function Kyj(y) = K(yj − y) centered around
yj. These density functions are aggregated so that the weight of
K(yj − y) in the assessment of the density of yt is proportional to
the degree that the data point xj is similar to the new data point xt .

As in the othermodels discussed above, two special cases of (18)
may be of interest. First, assume that s is constant. This is equiva-
lent to suggesting that all past observations are equally relevant.
In this case, (18) boils down to classical kernel estimation of the
density f (ignoring the variables x1, . . . , xd). Another special case
is given by s(xt , xj) = 1{xt=xj}.

7 In this case, (18) becomes a stan-
dard kernel estimation of f given only the sub-database defined by
xt . Thus, formula (18)may be viewed as offering a continuous spec-
trumbetween the unconditional kernel estimation and conditional
kernel estimation given xt .

In this sectionwe justify the formula (18) on axiomatic grounds
and develop a procedure for its estimation. We start with the
axiomatic model, considering the estimated density as a function
of the database. We then proceed to interpret the formula we
obtain as a data-generating process. This implies that the functions
s andK , whose existence follows from the axioms, can be viewed as
functions of unknown parameters of a distribution, and thus as the
object of statistical inference.We proceed to develop the statistical
theory for the estimation of these functions.

6.1. Axiomatization

Let F be the set of continuous, Rieman-integrable density func-
tions on R.8 Let C = Rd+1 be the set of possible observations.9
A database is a sequence of cases, D ∈ Cn for n ≥ 1. The set of
all databases is denoted C∗

= ∪n≥1 Cn. The concatenation of two
databases, D = (c1, . . . , cn) ∈ Cn and E = (c ′

1, . . . , c
′
t) ∈ C t , is de-

noted byD◦E and it is defined byD◦E = (c1, . . . , cn, c ′

1, . . . , c
′
t) ∈

Cn+t . Observe that the same element of C may appear more than
once in a given database.

Fix a prediction problem, xt ∈ Rd. We suppress it from the
notation through the statement of Theorem 1. For each D ∈ C∗,
the predictor has a density f (D) ∈ F reflecting her beliefs over
the value of yt in the problem under discussion. Thus, we study
functions f : C∗

→ F , and our axioms will take the form of
consistency requirements imposed on such functions.

For n ≥ 1, let Πn be the set of all permutations on {1, . . . , n},
i.e., all bijections π : {1, . . . , n} → {1, . . . , n}. For D ∈ Cn and
a permutation π ∈ Πn, let πD be the permuted database, that is,
πD ∈ Cn is defined by (πD)i = Dπ(i) for i ≤ n.

We formulate the following axioms.
A1, Order Invariance: For every n ≥ 1, everyD ∈ Cn, and every

permutation π ∈ Πn, f (D) = f (πD).

7 We assume that the function s is strictly positive. This simplifies the analysis as
one need not deal with vanishing denominators. Yet, for the purposes of the present
discussion it is useful to consider the more general case, allowing zero similarity
values. This case is not axiomatized in this paper.
8 Our results can be extended to Rm with no major complications.
9 For the purposes of the axiomatization, C may be an abstract set of arbitrarily

large cardinality.

A2, Concatenation: For every D, E ∈ C∗, f (D ◦ E) = λf (D) +

(1 − λ)f (E) for some λ ∈ (0, 1).
Almost identical axioms appear in BGSS (2005). They deal with

probability vectors over a finite space, rather thanwith densities. In
their model, for every database D there exists a probability vector
p(D) in a finite-dimensional simplex, and the axioms they impose
are identical to A1 and A2 with p playing the role of f .

The Order Invariance axiom states that a permuted database
will result in the same estimated density. This axiom is not too
restrictive provided that the variables x = (x1, . . . , xd) specify all
relevant information (such as the time at which the observation
was made). The Concatenation axiom has the following behavioral
interpretation. Assume that, given database D, an expected utility
maximizer has to make decisions, where the state of the world
is y ∈ R, and assume that her beliefs are given by the density
f (D). The Concatenation axiom is equivalent to saying that, for any
integrable bounded utility function, if act a has a higher expected
utility than does act b given each of two disjoint databases D
and E, then a will be preferred to b also given their union D ◦ E.
Equivalently, the Concatenation axiom requires that, for any two
integrable bounded functions ϕ,ψ : R → R, if the expectation
of ϕ(Y ) is at least as large as that of ψ(Y ) given each of two
disjoint databases D and E, then this inequality holds also given
their union D ◦ E. This axiom is a variation of the Combination
axiom in Gilboa and Schmeidler (2003), where it is extensively
discussed. In particular, the Combination axiom is unlikely to hold
when the data may reflect patterns. Thus, when time series are
involved, a straightforward application of our method may lead to
poor predictions.

The following theorem is an adaptation of the main result of
BGSS (2005) to our context.

Theorem 1. Let there be given a function f : C∗
→ F and

assume that not all {f (D)}D∈C∗ are collinear. Then the following are
equivalent:
(i) f satisfies A1 and A2;
(ii) There exists a function f0 : C → F , and a function s : C →

R++ such that, for every n ≥ 1 and every D = (c1, . . . , cn) ∈ Cn,

f (D) =

∑
j≤n

s(cj)f0(cj)∑
j≤n

s(cj)
. (∗)

Moreover, in this case the function f0 is unique, and the function s
is unique up to multiplication by a positive number.

Recall that the discussion has been relative to a new datapoint
xt , and that cj = (x1j , . . . , x

d
j , yj). Abusing notation, wewrite (xj, yj)

for (x1j , . . . , x
d
j , yj). Thus, an explicit formulation of (∗)would be

f (D, xt)(y) =

∑
j≤n

s

(xj, yj), xt


f0((xj, yj))(y)∑

j≤n
s

(xj, yj), xt

 . (19)

We interpret this formula as follows. Let s

(xj, yj), xt


be the

degree to which past observation (xj, yj) is considered to be
relevant to the present datapoint xt . We would like to think of this
degree of relevance as the similarity of the past case to the present
one. Let f0((xj, yj))(y) be the value of the density function, given
a single observation (xj, yj), at the point y. Then, given database
D, the estimated density of y is a similarity-weighted average
of the densities f0((xj, yj))(y) given each past observation, where
more similar observations get proportionately higherweight in the
average.

We now make the following additional assumptions: (i) the
similarity function depends only on the variables x = (x1, . . . , xd),
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thus, s

(xj, yj), xt


= s


xj, xt


; (ii) the density function f0((xj, yj))

(y) does not depend on xj, i.e., f0((xj, yj))(y) = f0(yj)(y); and (iii)
the density f0(yj)(y) is a non-increasing function of the distance be-
tween yj and y, that is, f0(yj)(y) = K(yj − y) for a kernel function
K ∈ F .10 Under these assumptions, (19) boils down to (18).

We refer to (19) as a ‘‘double-kernel’’ density function: each
observation yj for predictor values xj affects the density of y values
that are close to yj, and it does so not only for the density of y given
the specific xj, but also for values of x that are close to xj.

6.2. Statistical analysis

The formula (18) can be viewed either parametrically or non-
parametrically. If the former approach is taken, then (18) is
assumed to be correctly specified up to a finite dimensional
vector of parameters, say, ψ = (w, θ)′, where w = (w1, . . . , wd)
are the weights of the similarity function as above, and θ =

(θ1, . . . , θr) are parameters that specify the kernel function K .11 To
estimate this model, let Ft = σ (x1, . . . , xt , y1, . . . , yt−1) and as-
sume that the true conditional density of yt , given Ft−1, is given by

ft (y;ψ) =

∑
j<t

sw

xt , xj


Kθ


y − yj


∑
j<t

sw

xt , xj

 , t = 2, 3, . . . , n.

The joint density of y = (y1, . . . , yn), conditional on x =

(x1, . . . , xn), is

f (y;ψ) =

n∏
t=1

ft (yt;ψ)

=

n∏
t=1

∑
j<t

sw

xt , xj


Kθ


yt − yj


∑
j<t

sw

xt , xj

 .

We can proceed with any classical approach, such as maximum
likelihood estimation (MLE), where the MLE of ψ is defined as

ψ̂ = argmax
ψ

n−
t=1

log

∑
j<t

sw

xt , xj


Kθ


yt − yj


∑
j<t

sw

xt , xj

 .

Then, the estimated conditional density of yt is ft

y; ψ̂


.

Alternatively, we can take a nonparametric approach, viewing
(18) as a nonparametric conditional density estimator. If we con-
sider a kernel function given up to a single bandwidth parameter
h, we obtain the following double-kernel, adaptive non-parametric
density estimator,

ft (y) =

∑
j<t

sw

xt , xj


K


y−yj
h


h
∑
j<t

sw

xt , xj

 (20)

depending on d + 1 parameters,w1, . . . , wd, h. In the special case
where w1 = · · · = wd = 0 (i.e., when all the sw ’s are equal), the
formula reduces to the usual kernel density estimate,

ft (y) =
1

(t − 1)h

t−1−
j=1

K

y − yj

h


.

In order to make (20) operational, we can choose h and w jointly
so as to satisfy any reasonable criterion, such as the minimum of
the MISE.

10 These simplifying assumptions can be written in terms of axioms on f : C∗
→

F . However, this translation is straightforward and therefore omitted.
11 Of course, one may consider richer parametric models, such as a quadratic
distance function that depends on


d
2


+ d parameters.

7. Discussion

Analogical reasoning is a cornerstone of human intelligence.
Formal and axiomatically based models of such reasoning have
resulted in the empirical similarity approach discussed above. The
formulae used in this approach turn out to be very similar to
kernel methods in statistics. While the differences between the
empirical similarity approach and kernel methods should not be
underestimated, the striking similarity between the formulae used
in both method is probably not coincidental.

Our findings suggest that a closer interaction between statisti-
cal theory and axiomatic decision theory may be fruitful for both
disciplines. Statistical techniques may be interpreted as models of
human reasoning and decision making. Just as kernel techniques
may be viewed as formal models of reasoning by analogies, other
statistical methods may also inform us regarding the way people
think. In particular, regression analysis suggests a simple model of
reasoning that goes beyond mere analogies to the identification of
trends. It appears obvious that decisionmakers engage in such rea-
soning, and decision theory should incorporate it into its formal
models.

Conversely, the axiomatic approach may further our under-
standing of statistical techniques and help us see connections
among them. For instance, we find that a basic principle, namely
the Combination axiom, appears to be at the foundation of several
techniques, such as kernel estimation, kernel classification, likeli-
hood maximization as well as the empirical similarity approach.
Studying the underlying principles of various methods may sug-
gest new ways to combine them in order to tackle new problems.

Appendix. Proof of Theorem 1

The necessity of the axioms is straightforward. We now prove
sufficiency.

Consider the sequence of partitions of R defined by

Pm = {(−∞,−m), [m,∞)} ∪

[
T +

l
2m
, T +

l + 1
2m

 
− m ≤ T ≤ m − 1, 0 ≤ l ≤ 2m

− 1

. (21)

Thus, Pm contains m2m+1
+ 2 intervals, of which two are infinite.

For f ∈ F , let fm be the distribution induced by f on Pm. Specifically,
for A ∈ Pm, fm(A) =


A f (y)dy. Observe that, for every f ∈ F ,

max{fm(A) | A ∈ Pm} → 0 asm → ∞.
Fix Pm and consider fm(D) for D ∈ C∗. Observe that fm satisfies

the axioms of BGSS (2005). Hence for every m ≥ 1 there exists
a function sm : C → R++ such that, for every n ≥ 1, every
D = (c1, . . . , cn) ∈ Cn, and every A ∈ Pm,

fm(D)(A) =

∑
j≤n

sm(cj)fm(cj)(A)∑
j≤n

sm(cj)
. (22)

It follows that (22) holds also for every event A that is Pm-
measurable. Consider two consecutive partitions, Pm and Pm+1.
Since every event A ∈ Pm is also Pm+1-measurable, we conclude
that, for every n ≥ 1, every D = (c1, . . . , cn) ∈ Cn, and every
A ∈ Pm,

fm+1(D)(A) =

∑
j≤n

sm+1(cj)fm+1(cj)(A)∑
j≤n

sm+1(cj)
. (23)

However, fm+1(D)(A) = fm(D)(A) =

A f (D)(y)dy and

fm(cj)(A) = fm+1(cj)(A) =

A f (cj)(y)dy. Combining these with

(22) and (23), we conclude that sm+1 can replace sm in (22). By the
uniqueness result of BGSS (2005), sm+1 is a multiple of sm. Without
loss of generality, we may assume that sm+1 = sm. Thus, these
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exists a function s : C → R++, and, for each c ∈ C , a density
f (c) ∈ F , such that, for every m ≥ 1, for every n ≥ 1, every
D = (c1, . . . , cn) ∈ Cn, and every A ∈ Pm,

fm(D)(A) =

∑
j≤n

s(cj)f (cj)(A)∑
j≤n

s(cj)
. (24)

Next consider an arbitrary finite interval (u, v) (where −∞ ≤

u < v ≤ ∞). Observe that, for every n ≥ 1 and every D =

(c1, . . . , cn) ∈ Cn,

f (D)((u, v)) = lim
m→∞

−
{A∈Pm|A⊂(u,v)}

fm(D)(A)

= lim
m→∞

−
{A∈Pm|A⊂(u,v)}

∑
j≤n

s(cj)f (cj)(A)∑
j≤n

s(cj)

= lim
m→∞

−
j≤n

s(cj)∑
j≤n

s(cj)

−
{A∈Pm|A⊂(u,v)}

f (cj)(A)

=

−
j≤n

s(cj)∑
j≤n

s(cj)
lim

m→∞

−
{A∈Pm|A⊂(u,v)}

f (cj)(A)

=

−
j≤n

s(cj)∑
j≤n

s(cj)
f (cj)((u, v));

hence (∗) is proved.
Finally, the uniqueness of f is obvious, and the uniqueness of

s (up to multiplication by a positive number) follows from the
uniqueness result in BGSS (2005). �
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