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Abstract

A literal interpretation of neo-classical consumer theory suggests
that the consumer solves a very complex problem. In the presence of
indivisible goods, the consumer problem is NP-Hard, and it appears
unlikely that it can be optimally solved by a human. A simple and
intuitive heuristic suggests that the consumer adopt a top-down ap-
proach, dividing her budget among main categories, further dividing
these amounts to sub-categories and so forth. Such a heuristic may
give rise to phenomena of mental accounting.

1 Introduction

Economists seem to be in agreement about two basic facts regarding neo-

classical consumer theory. The first is that the depiction of the consumer as

maximizing a utility function given a budget constraint is a very insightful

tool. The second is that this model is probably a poor description of the
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mental process that consumers go through while making their consumption

decisions at the level of specific products.

The first point calls for little elaboration. The neoclassical model of

consumer choice is extremely powerful and elegant. It lies at the heart, and

is probably the origin of “rational choice theory”, which has been applied

to a variety of fields within and beyond economics. Importantly, utility

maximization, as a behavioral model, does not assume that a mental process

of maximization actually takes place. Behaviorally, utility maximization was

shown to be equivalent to highly cogent assumptions regarding consumer

choices (see Debreu, 1959).

Yet, many writers have commented on the fact that a literal interpretation

of the theory does not appear very plausible. Recent literature in psychology,

decision theory, and economics is replete with behavioral counter-examples

to the utility maximization paradigm. These include direct violations of

explicit axioms such as transitivity, as well as examples that violate implicit

assumptions, such as the independence of reference points (see Kahneman

and Tversky, 1979, 1984). Another implicit assumption that is often dubious

is that consumers are aware of all the bundles in their budget set. The

following example illustrates.

Every morning John starts his day in a local coffee place with a caffe

latte grande and a newspaper. Together, he spends on coffee and newspaper

slightly over $3 a day. He then takes public transportation to get to work.

One day Mary joins John for the morning coffee, and he tells her that he

dislikes public transportation, but that he can’t afford to buy a car. Mary

says that she has just bought a small car, financed at $99 a month. John

sighs and says that he knows that such financing is possible, but that he

can’t even afford to spend an extra $99 a month. Mary replies that if he

were to give up on the caffe latte and newspaper each morning, he could buy

the car. John decides to buy the car and give up on the morning treat.

What did Mary do to change John’s consumption pattern? She did not
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provide him with new factual information. John had been aware of the ex-

istence of inexpensive financing for small cars before his conversation with

Mary. Mary also did not provide him with new information about the ben-

efits of a car; in fact, it was John who brought up the transportation issue.

Rather than telling John of new facts that he had not known before, Mary

was pointing out to him certain consumption bundles that were available to

him, but that he had failed to consider beforehand. Indeed, the number of

possible consumption bundles in John’s budget set is dauntingly large. He

cannot possibly be expected to consider each and every one of them. In this

case, he never got to ask himself whether he preferred the coffee or the car.

Consequently, it would be inaccurate to depict John as a utility maximizing

agent. Such an agent should not change his behavior simply because someone

points out to him that a certain bundle is in his budget set.

This example is akin to framing effects (Tversky and Kahneman, 1981) in

that it revolves around reorganization of existing knowledge. However, our

example differs from common examples of framing effects in one dimension:

the ability of the consumer to learn from her mistake and to avoid repeating

it. Many framing effects will disappear as soon as the decision problem is

stated in a formal model. By contrast, the richness of the budget set poses

an inherent difficulty in solving the consumer problem. In our example, John

didn’t fail to consider all alternatives due to a suggestive representation of the

problem. We argue that he failed to do so due to the inherent complexity

of the problem. Specifically, in section 2 we prove that, in the presence

of indivisible goods, the consumer problem is NP-Complete. This means

that deviations from neoclassical consumer theory cannot be dismissed as

“mistakes” that can be avoided should one be careful enough. It is practically

impossible to avoid these deviations even if one is equipped with the best

software and the fastest computers that are available now or in the foreseeable

future.

There are many problems for which utility maximization can be viewed as
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a reasonable, if admittedly idealized model of the consumer decisions. Con-

sider, for example, a graduate student in economics, who has to survive on

a stipend of $25,000 a year. This is a rather tight budget constraint. Taking

into account minimal expenditure on housing and on food, one finds that very

little freedom is left to the student. Given the paucity of the set of feasible

bundles, it seems reasonable to suggest that the student considers the pos-

sible bundles, compares, for instance, the benefit of another concert versus

another pair of jeans, and makes a conscious choice among these bundles.

When such a choice among relatively few bundles is consciously made, it

stands to reason that it would satisfy axioms such as transitivity or the weak

axiom of revealed preference. The mathematical model of utility maximiza-

tion then appears as a reasonable idealization of the actual choice process of

the student.

Next consider the same student after having obtained a job as an assistant

professor. Her tastes have probably changed very little, but her budget is

now an order of magnitude larger than it used to be. Housing and food are

still important to her, but they are unlikely to constrain her choice in a way

that would make her problem computationally easy. In fact, the number

of possible bundles she can afford has increased to such an extent that she

cannot possibly imagine all alternatives. Should she get box tickets for the

opera? Save more money for a Christmas vacation? Buy diamonds? Save for

college tuition of her yet-unborn children? For such an individual, it seems

that the utility maximization model has lost much of the cognitive appeal

it used to have with a tight budget constraint. Correspondingly, it is not as

obvious that her implicit choices satisfy the behavioral axioms of consumer

theory.

The computational difficulties with the neoclassical model suggest that

this model does not accurately describe the way consumers make decisions,

at least not at the level of specific products. The question then arises, how

do consumers make their decisions? Whatever process they use is likely to
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lead often to decisions that will appear irrational or anomalous when viewed

through the prism of the neoclassical model.

One simple way the consumer may solve her problem is to use a “top-

down” approach, going from major categories down to sub-categories, then

to sub-sub-categories, and so forth. For example, the consumer may first

allocate her income between consumption and savings. Consumption may be

split into durable and non-durable goods. Expenses on non-durable goods

might be divided into food, transportation, entertainment, etc., and each

of these items can be further split. Thus, one may consider a tree whose

root represents total income, and every node — an expense on a particular

(sub-)category. The consumer can be imagined to make decision regarding

expenses in a top-down manner: she begins at the root of the tree and

proceeds downwards, where, at every node, the “budget” for the node is the

allocation that was decided upon at the node above. The number of sub-

nodes relating to each node may be relatively small, and thus, at each step

the consumer faces a low-dimension sub-problem, reminiscent of classroom

examples in consumer theory. At the end of the process, the consumer arrives

at a budget allocation.

An allocation that is arrived at in this fashion may be “locally optimal”

in the sense that the consumer will not benefit from any re-allocation of

the budget among the sub-nodes of any given node. Yet, such an allocation

is not guaranteed to be “globally optimal”, that is, to provide an optimal

solution to the original problem, for several reasons. First, the consumer

may find it hard to assess the precise utility derived from a given budget

allocation at the level of categories, until she knows how she is going to

allocate the budget within each category. Even if the consumer does not

have any uncertainty about her preferences between any pair of bundles, she

cannot imagine which specific bundles will result from different allocations of

the budget at the top levels. Second, there are many different ways to allocate

products into categories and sub-categories, and different category trees may
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result in different budget allocations. Third, certain products may belong to

more than one category, and thus the categories may not form a tree in the

first place. For example, the consumer may budget some money for clothing

and some money for “unexpected opportunities”. A cashmere sweater with

a normal price of $300 may fall in the clothing category, but when it goes

on special sale for $150 it may come under unexpected opportunities. In

spite of the difficulties that the consumer may face in allocating her income

across categories, the computational complexity discussed above may make

this top-down approach an intuitive and useful heuristic.

The top-down heuristic may explain phenomena that are referred to as

mental accounting (Thaler and Shefrin, 1981; Thaler, 1980, 1985, 2004). To

see a simple example, suppose that a sub-category of expenses is split into

“standard expenses” and “special events”. In this case, the consumer may de-

cide to buy an item if it is considered a birthday gift, but refrain from buying

it if it is not associated with any special event. In other words, the top-down

approach implies that the same bundle will be viewed differently depending

on the categorization used. Thus, we find that computational complexity of

the consumer problem may result in mental accounting. Conversely, while

mental accounting is certainly a deviation from classical consumer theory, it

appears to involve only a very mild form of “bounded rationality”. Treating

money as if it came from different accounts is not simply a mistake that

can be easily corrected. Rather, it is a by-product of a reasonable heuristic

adopted to deal with an otherwise intractable problem.

The next section states the complexity result, whose proof is given in an

appendix. Section 3 briefly explains how several examples of mental account-

ing may result from the top-down heuristic to the consumer problem, while

Section 4 concludes with a discussion.
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2 Complexity Results

Many writers have observed that the consumer problem is, intuitively speak-

ing, a complex one. Some (see MacLeod, 1996) have also made explicit

reference to the combinatorial aspects of this problem, and to the fact that,

when decisions are discrete, the number of possible bundles grows as an ex-

ponential function of the parameters of the problem.1 However, the very fact

that there exist exponentially many possible solutions does not mean that a

problem is hard. It only means that a brute-force algorithm, enumerating

all possible solutions, will be of (worst-case) exponential complexity. But

for many combinatorial problems with an exponentially large set of possible

solutions there exist efficient algorithms, whose worst-case time complexity is

polynomial. Thus, in order to convince ourselves that a problem is inherently

difficult, we need to prove more than that the number of possible solutions

grows exponentially in the size of the problem.

In this section we show that, when some goods are indivisible, the con-

sumer problem is “hard” in the sense of NP-Completeness. This term is

borrowed from the computer science literature, and it refers to a class of

combinatorial problems that are deemed to be “hard” in the following sense.

For any NP-Complete problem the number of steps in any known algorithm

solving the problem grows exponentially in the size of the problem. Conse-

quently, for even moderate size problems, it might take the fastest computers

that exist years to solve the problem. Further, if an algorithm were found

for which the number of steps in the algorithm was a polynomial in the size

of the problem for any NP-Complete problem, the algorithm could be used

to construct polynomial algorithms for all NP-Complete problems. Since a

variety of these problems have been exhaustively studied for years and no

1For example, assume that there are m binary decisions, each regarding the purchase
of a product at price p. With income I, the consumer can afford to purchase I

p products.
She therefore has to consider

¡
m
I
p

¢
different bundles. If m is relatively large, this expression

is of the order of magnitude of m
I
p , namely, exponential in I.
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efficient (polynomial) algorithm is known for any of them, proving that a

new problem is NP-Complete is taken to imply that it is a hard problem as

well. (See further discussion in Appendix B.)

Thus, the vague intuition that it is hard to maximize a utility function

over a large budget set is supported by our complexity result. As rational as

consumers can possibly be, it is unlikely that they can solve in their minds

problems that prove intractable for computer scientists equipped with the

latest technology. Correspondingly, it is always possible that a consumer

will fail to even consider a bundle that, if pointed out to her, she would

consider desirable. It follows that one cannot simply teach consumers to

maximize their utility functions. In a sense, this type of violation of utility

maximization is more robust than some of the examples of framing effects

and related biases. In the example given in the Introduction, John failed

to consider a possible bundle that was available to him. After this bundle

was pointed out to him by Mary, he could change his behavior and start

consuming it. But he had no practical way of considering all consumption

bundles, and he could not guarantee himself that in his future consumption

decisions he would refrain from making similar omissions.

An NP-Complete problem has the additional feature that, once a solution

to it is explicitly proposed, it is easy to verify whether it indeed solves the

problem (this is the “NP” part of the definition). Thus, for an NP-Complete

problem it is hard to find a solution, but it is easy to verify a solution as

legitimate if one is proposed. In this sense, problems that are NP-Complete

present examples of “fact-free learning”: asking an individual whether a

certain potential solution is indeed a solution may make the individual aware

of it, accept it, and change her behavior as a result. Aragones, Gilboa,

Postlewaite, and Schmeidler (2005) show that finding a “best” regression

model is an NP-Complete problem, and thus that finding regularities in a

given database may result in fact-free learning. This section shows that fact-

free learning can also occur in the standard consumer problem, arguably the
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cornerstone of economic theory.

2.1 Problem 1: Products and characteristics

Consider a consumer who has to choose a bundle composed of n products.

As a leading example, consider electronic products including mobile phones,

hand-held computers, laptop computers, etc. The quantity bought of product

i is xi. The variable xi is naturally a non-negative integer. It may simplify

the problem to assume that xi is either 0 or 1, but, as we shall see, this

simplification will be of little help.

There are 1, ...,m characteristics, where each product has a certain subset

of these characteristics. For example, the characteristics may be the ability

to (i) place and accept phone calls; (ii) send and receive text messages;

(iii) email; (iv) listen to pre-recorded music; (v) surf the internet; (vi) store

files and photos; etc. Thus, a simple mobile phone will have characteristics

(i) and (ii), but perhaps not (iii)-(vi). An MP3 device will typically have

characteristics (iv) and (vi) but not necessarily (i) or (ii), and so forth.

Schematically, the product-characteristic matrix may look as follows:

Products phone text e-mail music internet photos
1 X X
2 X X
3 X X X
4 X X X X
5 X X X X X

Product i has a price pi. The consumer’s income is I > 0. The question

is, what is the best combination of products that the consumer can afford to

buy at the given prices and income. Let us simplify the problem further by

restricting attention to a simple class of utility functions: the consumer has

a utility of 1 if for each characteristic she has bought at least one product

that has this characteristic, and 0 otherwise. We can think of the consumer

as insisting on having the ability to communicate by phone, text, e-mail, as
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well as to listen to music and store data, etc. According to the matrix in this

example, the consumer will be satisfied if she buys products 1 and 4, or, say,

3 and 5, but not if she buys products 2 and 3.

Clearly, one may consider a more general class of utility functions, allow-

ing for more utility levels according to the degree to which the consumer’s

desires are satisfied. However, even the simple class of functions we consider

here suffices for our result.

Let the Consumer Problem be: Given natural numbers n and m, and a

matrix of n×m entries δij ∈ {0, 1}, where δij denotes whether product i has
characteristic j, prices (pi)i and income I, can the consumer obtain a level

of utility 1?

Claim 1 The Consumer Problem is NP-Complete.

Notice that with n products, the consumer might have to consider 2n

different bundles (restricting attention to quantity that is 0 or 1). While the

number of bundles is very large even for moderate values of n, this does not

imply that the Consumer Problem is difficult; as we discussed above, there
are problems with exponentially many possible alternatives for which there

exist efficient algorithms. Claim 1 states more than a mere counting of the

possible solutions. It says that, if there were an algorithm that could solve

the Consumer Problem efficiently, there would have been such algorithms to

each of the thousands of combinatorial problems that are in the class NP,

including many well-studied ones. Consequently, it is plausible that actual

consumers, whether they enumerate all possible bundles or not, cannot be

guaranteed to solve their budget allocation problem optimally.

2.2 Problem 2: The classical consumer problem

Given the result above, it should not surprise us that more complicated

problems, allowing for a more general class of maximization problems, are

also NP-Complete. Yet, it is worth noting that among these more general
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problems one can find the neoclassical consumer problem, of maximizing

a quasi-concave utility function with a budget constraint. In defining this

problem we follow the neoclassical tradition, according to which the various

characteristics of the products, as well as the consumer’s needs and wants

are all encapsulated into the consumer’s utility function. Thus, we consider

a problem P =
­
n, (pi)i≤n , I, u

®
whose input is:

n ≥ 1 — the number of products;
pi ∈ Z+ is the price of product i ≤ n;

I ∈ Z+ is the consumer’s income; and
u : Zn+ → R is the consumer’s utility function.
The function u is assumed to be given by a well-formed arithmetic formula

involving the symbols “x1”,...,“xn”,“+”,“∗”,“−”,“/”,“ˆ”,“(”,“)”,“0”,...,“9”
with the obvious semantics (and where “ˆ” stands for power). As is standard

in consumer theory, we assume that this formula, when applied to all of Rn
+,

defines a continuous, nondecreasing, and quasi-concave function.

Let the General Consumer Problem be: Given a consumer problem P =­
n, (pi)i≤n , I, u

®
and an integer ū, can the consumer obtain utility ū in P?

(That is, is there a vector (x1, ..., xn) ∈ Zn+ such that
P

i≤n pixi ≤ I and

u(x1, ..., xn) ≥ ū ?)

We can now state:

Proposition 1 The General Consumer Problem is NP-Complete.

3 Mental Accounting

In this section we consider several examples of mental accounting that might

result from the top-down heuristic for budget allocations.

Example 1: (Thaler, 1985): Mr. S admires a $125 cashmere sweater at
the department store. He declines to buy it, feeling that it is too extravagant.

Later that month he receives the same sweater from his wife for a birthday

present. He is very happy. Mr. and Mrs. S have only joint bank accounts.
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As indicated in the introduction, assume that at some node in the budget

tree Mr. S divides the category “non-durable consumption” into “repeated

expenses” and “special events”. The latter is supposed to be the budget he

allocates to birthday and anniversary gifts, Christmas presents and do forth.

The sum of $125 may appear high as compared to the repeated expenses,

but may appear reasonable when coming out of the special events budget.

Indeed, splitting Mr. S’s annual income, any expense that is categorized as

repeated is multiplied by the number of its recurrences per year. As a result,

Mr. S has a greater incentive to be frugal when it comes to repeated expenses

than when special events are considered. Thus, he may be happy to received

the $125 sweater as a birthday present even if he doesn’t think he can afford

such expenses on a regular basis.

Example 2: (Thaler, 1985): Mr. and Mrs. L and Mr. and Mrs. H went
on a fishing trip in the northwest and caught some salmon. They packed the

fish and sent it home on an airplane, but the fish were lost in transit. They

received $300 from the airline. The couples take the money, go out to dinner

and spend $225. They had never spent that much at a restaurant before.

This is an example of unexpected income, which is used with much greater

frivolity than expected income.2 Consider the two couples and imagine that,

before going on their trip, they have allocated their budgets along to bud-

get trees according to the top-down heuristic. When their fish are lost, an

unexpected $300 extra income becomes available. Classical consumer theory

would suggest that the budget line has been moved “away” from the origin,

enlarging the budget set, and calling for a re-calculation of the optimization

problem. Indeed, even according to the top-down approach the couples can

decide to save some of the $300 and consume the rest, to spend some of the

consumption on durable and some on non-durable goods, etc. However, it is

hardly worthwhile to re-calculate all the steps of the allocation problem. In-

2For a review of the literature on excess sensitivity of consumption see Browning and
Lusardi, 1996.
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stead, the consumers may decide to add the extra income to one of the leaves

of the tree, consuming it in its entirety. Moreover, it makes more sense to

add the income to a leaf of the tree where it would be noticeable, and thus

adding it to “fancy restaurants” appears to make a bigger difference than

adding it to “lifetime savings”. Indeed, additional psychological considera-

tions are needed to explain how the extra money will be spent. Our main

point is that the top-down heuristic naturally gives rise to behavior that is

typically viewed as mental accounting.

Example 3: Revisiting the example from the introduction, John might

not have considered the possibility of spending less on coffee and newspaper

and more on buying a car because they belonged to different categories, say,

“small, daily expenses” vs. “large, one-time expenses”. Once the allocation

of the budget between these categories has been decided upon, it is difficult

to conceive of trade-off between them further down the budget tree.

4 Discussion

4.1 Mental accounting

It is sometimes suggested that mental accounting is a tool a consumer subject

to self-control problems might use to control spending. An individual might

use a mental accounting system to “... keep spending under control” (Thaler,

2004). Roughly the idea is that an individual can be thought of as consist-

ing of multiple selves, with the current self setting out rules and budgets to

discipline future selves and to limit their deviations from the plans that are

optimal from the current self’s point of view. Examples 1 and 2 above can be

thought of in this way. In the present paper, consumers might employ men-

tal accounting, but for fundamentally different reasons. In our framework,

consumers are as coherent as in the neoclassical model, but face complexity

constraints in making decisions. In particular, they can be made better off if

someone were to point out alternatives that they hadn’t considered, as in the
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example in the introduction, but there is no difficulty in determining whether

changing their consumption choices is beneficial, as there is in multiple selves

models. In this sense our “explanation” of mental accounting examples such

as 1 and 2 above is conceptually a smaller deviation from the neoclassical

model. At the same time, while multiple selves model are usually analyzed

by standard game theoretic techniques, it is less obvious how consumer the-

ory should be expanded to deal with the complexity challenges we discuss

here.

We should make clear that we are not arguing that the account above

for why a consumer might employ mental accounting is the only, or even the

best, foundation for doing so. The suggestion is only that the complexity of

the consumer’s problem can lead to mental accounting by consumers with

completely standard neoclassical preferences.

4.2 Unknown utility

The complexity result presented in Section 2 should be distinguished from

the literature on learning one’s utility function. Indeed, the psychological

literature suggests that people do not seem to be particularly successful in

predicting their own well-being as a result of future consumption. Consumers

do not excel in “affective forecasting” (see Kahneman and Snell, 1990, and

Gilbert, Pinel, Wilson, Blumberg, and Wheatley, 1998). In other words,

agents may be uncertain about their utility functions, and they may learn

them through the experience of consumption. In this sense, a consumer is

faced with a familiar trade-off between exploration and exploitation: trying

new options in order to gain information, and selecting among known options

in an attempt to use this information for maximization of well-being.

By contrast, our formulation of the consumer’s problem ignores this dif-

ficulty. We assume that the utility function is given, as an easily applicable

formula, and that, given a particular bundle, there is no uncertainty re-

garding the utility derived from it. In this context, even in the absence of
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uncertainty, the consumer’s problem is shown to be dauntingly hard to solve.

Behaviorally, the two problems are distinct: a consumer who does not know

her utility function needs more factual information to learn it, such as a new

experience of consumption. But a consumer who faces a complexity problem

may learn from sheer introspection, without any new facts. For example, in

the example discussed in the Introduction, John finds new ways to organize

his consumption simply because the availability of a bundle is pointed out to

him, without learning from new experiences.

Realistic consumer problems are likely to be burdened with both sources

of difficulty: first, the utility function may not be known for many bundles

that have not been consumed; second, the number of possible bundles of

indivisible goods, coupled with complementarity and substitution between

them, make the problem hard to solve even under certainty.

5 Appendix A: Proofs

Proof of Claim 1:

We prove the result by reducing the following problem, which is known

to be NP-Complete, to the problem CONSUMER:

Problem COVER: Given a natural number r, a set of q subsets of
S ≡ {1, ..., r}, S = {S1, ..., Sq}, and a natural number t ≤ q, are there t

subsets in S whose union contains S?

(That is, are there indices 1 ≤ j1 ≤ ... ≤ jt ≤ q such that
S

l≤t Sjl = S ?)

COVER is easily seen to be a special case of our problem. Specifically,

given an instance of COVER, we define the characteristics to be the elements

of S. For each subset Sj ∈ S we define a good i that has precisely the relevant
characteristics. Setting all prices pi to 1 and letting the budget be I = t, the

consumer can afford a bundle that obtains utility 1 if and only if S can be

covered by a subset of no more than t elements of S. Clearly, this reduction

is linear in the size of the input.¤
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Proof of Proposition 1:

The reduction is from COVER again. Let there be given an instance

of COVER: a natural number r, a set of subsets of S ≡ {1, ..., r}, S =

{S1, ..., Sq}, and a natural number t. Let (yij)i≤q,j≤r be the incidence matrix,
namely yij = 1 if j ∈ Si and yij = 0 if j /∈ Si.

We now define the associated consumer problem. Let n = q. For i ≤ n,

let pi = 1, and define I = t. Next, define u by

u(x1, ..., xn) =
Y
j≤r

X
i≤n

yijxi.

Finally, set ū = 1.

A bundle (x1, ..., xn) ∈ Zn+ satisfies
P

i≤n pixi ≤ I and u(x1, ..., xn) ≥ ū

iff
P

i≤n xi ≤ t and
P

i≤n yijxi ≥ 1 for every j ≤ r. In other words, the

consumer has a feasible bundle x ≡ (x1, ..., xn) obtaining the utility of 1 iff
(i) no more than t products of {1, ..., n} are purchased at a positive quantity
at x, and (ii) the subsets Si corresponding to the positive xi form a cover

of S = {1, ..., r}. Observe that the construction above can be performed in
linear time.

It is left to show that we have obtained a legitimate utility function u.

Continuity holds because this is a well-defined function that is described by

an algebraic formula. Since yij ≥ 0, u is non-decreasing in the xi’s. We turn
to prove that it is quasi-concave.

If there exists j ≤ r such that yij = 0 for all i ≤ n, u(x1, ..., xn) = 0,

and u is quasi-concave.3 Let us therefore assume that this is not the case.

Hence u is the product of r expressions, each of which is a simple summation

of a non-empty subset of {x1, ..., xn}. On the domain {x |u(x) > 0 }, define
v = log(u). It is obviously sufficient to show that

v(x1, ..., xn) =
X
j≤r
log

ÃX
i≤n

yijxi

!
3One may wish to rule out these instances of COVER as they result in a satiable u.
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is quasi-concave. But it is not hard to see that v is concave, hence quasi-

concave: for every j ≤ r, log
¡P

i≤n yijxi
¢
is a concave function, and the sum

of concave functions is concave. This completes the proof of the proposition.

¤
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6 Appendix B: Computational Complexity

A problem can be thought of as a set of legitimate inputs, and a correspon-

dence from it into a set of legitimate outputs. For instance, consider the

problem “Given a graph, and two nodes in it, s and t, find a minimal path

from s to t”. An input would be a graph and two nodes in it. These are as-

sumed to be appropriately encoded into finite strings over a given alphabet.

The corresponding encoding of a shortest path between the two nodes would

be an appropriate output.

An algorithm is a method of solution that specifies what the solver

should do at each stage. Church’s thesis maintains that algorithms are
those methods of solution that can be implemented by Turing machines.
It is neither a theorem nor a conjecture, because the term “algorithm” has

no formal definition. In fact, Church’s thesis may be viewed as defining

an “algorithm” to be a Turing machine. It has been proved that Turing

machines are equivalent, in terms of the algorithms they can implement, to

various other computational models. In particular, a PASCAL program run

on a modern computer with an infinite memory is also equivalent to a Turing

machine and can therefore be viewed as a definition of an “algorithm”.

It is convenient to restrict attention toYES/NO problems. Such prob-
lems are formally defined as subsets of the legitimate inputs, interpreted as

the inputs for which the answer is YES. Many problems naturally define

corresponding YES/NO problems. For instance, the previous problem may

be represented as “Given a graph, two nodes in it s and t, and a number

k, is there a path of length k between s and t in the graph?” It is usually

the case that if one can solve all such YES/NO problems, one can solve the

corresponding optimization problem. For example, an algorithm that can

solve the YES/NO problem above for any given k can find the minimal k for

which the answer is YES (it can also do so efficiently). Moreover, such an

algorithm will typically also find a path that is no longer than the specified

k.
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Much of the literature on computational complexity focuses on time
complexity: how many operations will an algorithm need to perform in

order to obtain the solution and halt. It is customary to count input/output

operations, as well as logical and algebraic operations as taking a single unit

of time each. Taking into account the amount of time these operations ac-

tually take (for instance, the number of actual operations needed to add two

numbers of, say, 10 digits) typically yields qualitatively similar results.

The literature focuses on asymptotic analysis: how does the number of
operations grow with the size of the input. It is customary to conductworst-
case analyses, though attention is also given to average-case performance.
Obviously, the latter requires some assumptions on the distribution of inputs,

whereas worst-case analysis is free from distributional assumptions. Hence

the complexity of an algorithm is generally defined as the order of magnitude

of the number of operations it needs to perform, in the worst case, to obtain

a solution, as a function of the input size. The complexity of a problem is

the minimal complexity of an algorithm that solves it. Thus, a problem is

polynomial if there exists an algorithm that always solves it correctly within
a number of operations that is bounded by a polynomial of the input size.

A problem is exponential if all the algorithms that solve it may require
a number of operations that is exponential in the size of the input, and so

forth.

Polynomial problems are generally considered relatively “easy”, even though

they may still be hard to solve in practice, especially if the degree of the

polynomial is high. By contrast, exponential problems become intractable

already for inputs of moderate sizes. To prove that a problem is polynomial,

one typically points to a polynomial algorithm that solves it. Proving that

a YES/NO problem is exponential, however, is a very hard task, because it

is generally hard to show that there does not exist an algorithm that solves

the problem in a number of steps that is, say, O(n17) or even O(2
√
n).

A non-deterministic Turing machine is a Turing machine that allows
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multiple transitions at each stage of the computation. It can be thought of

as a parallel processing modern computer with an unbounded number of

processors. It is assumed that these processors can work simultaneously,

and, should one of them find a solution, the machine halts. Consider, for

instance, the Hamiltonian path problem: given a graph, is there a path

that visits each node precisely once? A straightforward algorithm for this

problem would be exponential: given n nodes, one needs to check all the

n! permutations to see if any of them defines a path in the graph. A non-

deterministic Turing machine can solve this problem in linear time. Roughly,

one can imagine that n! processors work on this problem in parallel, each

checking a different permutation. Each processor will therefore need no more

than O(n) operations. In a sense, the difficulty of the Hamiltonian path

problem arises from the multitude of possible solutions, and not from the

inherent complexity of each of them.

The class NP is the class of all YES/NO problems that can be solved

in Polynomial time by a Non-deterministic Turing machine. Equivalently,
it can be defined as the class of YES/NO problems for which the validity of

a suggested solution can be verified in polynomial time (by a regular, deter-

ministic algorithm). The class of problems that can be solved in polynomial

time (by a deterministic Turing machine) is denoted P and it is obviously a
subset of NP. Whether P=NP is considered to be the most important open

problem in computer science. While the common belief is that the answer is

negative, there is no proof of this fact.

A problem A is NP-Hard if the following statement is true (“the con-
ditional solution property”): if there were a polynomial algorithm for A,

there would be a polynomial algorithm for any problem B in NP. There may

be many ways in which such a conditional statement can be proved. For

instance, one may show that using the polynomial algorithm for A a poly-

nomial number of times would result in an algorithm for B. Alternatively,

one may show a polynomial algorithm that translates an input for B to an
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input for A, in such a way that the B-answer on its input is YES iff so is the

A-answer of its own input. In this case we say that B is reduced to A.
A problem is NP-Complete if it is in NP, and any other problem in NP

can be reduced to it. It was shown that the SATISFIABILITY problem

(whether a Boolean expression is not identically zero) is such a problem by a

direct construction. That is, there exists an algorithm that accepts as input

an NP problem B and input for that problem, z, and generates in polynomial

time a Boolean expression that can be satisfied iff the B-answer on z is YES.

With the help of one problem that is known to be NP-Complete (NPC), one
may show that other problems, to which the NPC problem can be reduced,

are also NPC. Indeed, it has been shown that many combinatorial problems

are NPC.

NPC problem are NP-Hard, but the converse is false. First, NP-Hard

problems need not be in NP themselves, and they may not be YES/NO

problems. Second, NPC problems are also defined by a particular way in

which the conditional solution property is proved, namely, by reduction.

There are by now hundreds of problems that are known to be NPC.

Had we known one polynomial algorithm for one of them, we would have

a polynomial algorithm for each problem in NP. As mentioned above, it is

believed that no such algorithm exists.
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