Authorization Decisions

Itzhak Gilboa and David Schmeidler

July 3, 2011

Gilboa and Schmeidler ()

Authorization Decisions

July 3, 2011 1 / 20

A binary decision, determining whether a transaction can take place (Typically by an institution, a government agency etc.)

• Status of agent (licensing)

A binary decision, determining whether a transaction can take place (Typically by an institution, a government agency etc.)

- Status of agent (licensing)
- Existence of market (medication)

A binary decision, determining whether a transaction can take place (Typically by an institution, a government agency etc.)

- Status of agent (licensing)
- Existence of market (medication)
- A specific transaction (construction project)

A binary decision, determining whether a transaction can take place (Typically by an institution, a government agency etc.)

- Status of agent (licensing)
- Existence of market (medication)
- A specific transaction (construction project)
- Granting property rights (tenure)

• The institution (agency...) as a decision maker

- The institution (agency...) as a decision maker
- Insightful, but limited

- The institution (agency...) as a decision maker
- Insightful, but limited
- The decision as an equilibria among agents

- The institution (agency...) as a decision maker
- Insightful, but limited
- The decision as an equilibria among agents
- Again... (observability; equilibrium selection)

Vast literature in organization theory Efficient production: Smith, 1776, Marx, 1867, and Durkheim, 1893 Well-tuned machine: Taylor, 1911, Follett, 1918, Fayol, 1919 Bureaus as production units: Niskanen, 1971, 1975 Decomposing the organization: Weber, 1921, 1924 (on authority and bureaucracy) For the state: Buchanan and Tullock, 1962 Decision making: March and Simon, 1958 (satisficing)

Other metaphors: organisms, brains, cultures, political systems...

• To suggest a formal model of authorization decisions that will capture some of the insights of the organization literature

- To suggest a formal model of authorization decisions that will capture some of the insights of the organization literature
- Yet be amenable to incorporation in economic models

- To suggest a formal model of authorization decisions that will capture some of the insights of the organization literature
- Yet be amenable to incorporation in economic models
- Highlighting the notions of consistency

- To suggest a formal model of authorization decisions that will capture some of the insights of the organization literature
- Yet be amenable to incorporation in economic models
- Highlighting the notions of consistency
- - with past decisions and with regulations

- To suggest a formal model of authorization decisions that will capture some of the insights of the organization literature
- Yet be amenable to incorporation in economic models
- Highlighting the notions of consistency
- - with past decisions and with regulations
- - and the power of bureaucracy

• Problems P

・ロト ・聞 ト ・ ヨト ・ ヨト

- Problems P
- Decision $d \in \{0, 1\}$

・ロト ・ 日 ト ・ 田 ト ・

- Problems P
- Decision $d \in \{0, 1\}$
- Cases $C = P \times \{0, 1\}$

э

・ロト ・回ト ・ヨト・

- Problems P
- Decision $d \in \{0, 1\}$
- Cases $C = P \times \{0, 1\}$
- A history $H \subset C$

Image: Image:

E ▶. э

- Problems P
- Decision $d \in \{0, 1\}$
- Cases $C = P \times \{0, 1\}$
- A history $H \subset C$
- A decision correspondence

$$f: \{ (H, p) \mid p \in P, H \in \mathcal{H}, p \notin H_P \} \twoheadrightarrow \{0, 1\}$$

Consistency

• Assume relevance functions

 $w_0, w_1: P \times P \rightarrow \mathbb{R}_+$

.∃ ▶ ∢ э

Consistency

• Assume relevance functions

*w*₀, *w*₁ : $P imes P
ightarrow \mathbb{R}_+$

• For *H*, *p*, and $d \in \{0, 1\}$,

$$W_{w_0,w_1}(H, p, d) = \sum_{c=(q,d)\in H} w_d(q, p).$$

(1)

Consistency

• Assume relevance functions

 $w_0, w_1: P imes P
ightarrow \mathbb{R}_+$

• For *H*, *p*, and $d \in \{0, 1\}$,

$$W_{w_0,w_1}(H, p, d) = \sum_{c=(q,d)\in H} w_d(q, p).$$

• Define the decision correspondence

$$f_{w_0,w_1}(H,p) = \arg\max_{d \in \{0,1\}} W_{w_0,w_1}(H,p,d)$$

(1)

• **Richness:** $\forall q \in P$ the set $\{q' \in P \mid q \sim_f q'\}$ is infinite.

- **Richness:** $\forall q \in P$ the set $\{q' \in P \mid q \sim_f q'\}$ is infinite.
- Axiom 1 (Combination): $\forall H, H' \text{ and } p \ (H_P \cap H'_P = \emptyset)$, If $f \ (H, p) \cap f \ (H', p) \neq \emptyset$, then $f \ (H \cup H', p) = f \ (H, p) \cap f \ (H', p)$.

- Richness: $\forall q \in P$ the set $\{ q' \in P \mid q \sim_f q' \}$ is infinite.
- Axiom 1 (Combination): $\forall H, H' \text{ and } p \ (H_P \cap H'_P = \emptyset)$, If $f(H, p) \cap f(H', p) \neq \emptyset$, then $f(H \cup H', p) = f(H, p) \cap f(H', p)$.
- Axiom 2 (Archimedeanity): IF $f(H, p) = \{d\}$, THEN $\forall H'$ $\exists k \ge 1, H''$ such that $H'' \approx_f kH$ and $f(H' \cup H'', p) = \{d\}$.

- Richness: $\forall q \in P$ the set $\{ q' \in P \mid q \sim_f q' \}$ is infinite.
- Axiom 1 (Combination): $\forall H, H' \text{ and } p \ (H_P \cap H'_P = \varnothing)$, If $f(H, p) \cap f(H', p) \neq \varnothing$, then $f(H \cup H', p) = f(H, p) \cap f(H', p)$.
- Axiom 2 (Archimedeanity): IF $f(H, p) = \{d\}$, THEN $\forall H' \exists k \ge 1, H''$ such that $H'' \approx_f kH$ and $f(H' \cup H'', p) = \{d\}$.
- Axiom 3 (Monotonicity): IF d ∈ f (H, p), THEN d ∈ f (H ∪ {(q, d)}, p).

Representation

Theorem

A decision correspondence f satisfies Axioms 1-3 if and only if there are relevance functions $w_0, w_1 : P \times P \to \mathbb{R}_+$ such that $f = f_{w_0, w_1}$.

Rules as Constraints

• A rule:
$$r = (D, d)$$
 where $D \subset P$, $d \in \{0, 1\}$

∃ >

イロン イヨン イヨン イ

Rules as Constraints

- A rule: r = (D, d) where $D \subset P$, $d \in \{0, 1\}$
- A a set of rules R. Let R(d) be

$$R(d) = \cup_{(D,d) \in R} D$$

Rules as Constraints

- A rule: r = (D, d) where $D \subset P$, $d \in \{0, 1\}$
- A a set of rules R. Let R(d) be

$$R(d) = \cup_{(D,d) \in R} D$$

• Rule-constrained decisions: for H, a set of rules R, and a problem p,

$$f_{w_0,w_1}(H,R,p) = \left\{egin{argmax}{c} d & \textit{if} \quad p\in R(d)ackslash R(1) \ rgmax_{d\in\{0,1\}} W_{w_0,w_1}(H,p,d) & \textit{otherwise} \end{array}
ight.$$

Language of Regulations Binary attributes $a_1, ..., a_m, a_j : P \to \{0, 1\}$ A regulation (J, b, d) with $J \subset \{1, ..., m\}, J \neq \emptyset, b : J \to \{0, 1\}$ $d \in \{0, 1\}.$

It is the rule r = (D(J, b), d) where

$$D(J, b) = \{ p \in P \mid a_j(p) = b(j) \quad \forall j \in J \}.$$

Imposing Decisions by Regulations

Proposition

Let there be given a number of attributes m, a set of regulations $R = \{(J_i, b_i, d_i)\}_{i=1}^n$, a problem p and a decision d. There exists a polynomial-time algorithm that finds out whether R is consistent, whether $p \in R(0), R(1)$, and, if R is consistent and $p \notin R(0), R(1)$, finds a regulation $(J_{n+1}, b_{n+1}, d_{n+1})$, such that $d_{n+1} = d$, $p \in D(J_{n+1}, b_{n+1})$ and $R' = \{(J_i, b_i, d_i)\}_{i=1}^{n+1}$ is consistent.

The Complexity of Minimal Regulations

Theorem

Let there be given a number of attributes m, a set of regulations $R = \{(J_i, b_i, d_i)\}_{i=1}^n$, a problem p, a decision d, and a number $k \ge 1$ such that R is consistent and $p \notin R(0), R(1)$. Finding whether there exists a regulation $(J_{n+1}, b_{n+1}, d_{n+1})$ such that $d_{n+1} = d$, $p \in D(J_{n+1}, b_{n+1})$, $R' = \{(J_i, b_i, d_i)\}_{i=1}^{n+1}$ is consistent, and $|J_{n+1}| \le k$ is NP-Complete. Regulations as Mega-Cases

Rather than constraints, regulations are "more relevant" precedences Can explain why some regulations are enforced and others are ignored

(Regulations as the bed of the river)

Bureaucracy

Hierarchy of languages and of decisions

A decision $d \in \{0, 1\}$ at the top level

And $d_1, ..., d_l \in \{0, 1\}$ at the lower level

An implementation function

$$\varphi: \{\mathsf{0},\mathsf{1}\}^{\prime} \to \{\mathsf{0},\mathsf{1}\}$$

For example,

$$\textit{d} = \textit{d}_1 \lor ... \lor \textit{d}_l$$

The Complexity of Implementation

Proposition

Given a problem $p \in P$, a decision $d \in \{0, 1\}$, decision variables $d_1, ..., d_l$, and an implementation function φ , finding whether the decision d can be implemented in p is NP-Complete.

Budgets

Tasks 1, ..., τ , with expenses e_i

```
Budgets B_1, \dots B_s
```

 $L_{ij} \in \{0, 1\}$ denoting whether task *i* be funded by budget *j* The allocation $A_{ij} \in \{0, 1\}$ is *consistent* if

$$egin{aligned} & \mathcal{A}_{ij} \leq \mathcal{L}_{ij} & orall i,j \ & \sum_{j \leq s} \mathcal{A}_{ij} = 1 & orall i \end{aligned}$$

and

$$\sum_{i\leq\tau}A_{ij}e_i\leq B_j\qquad\forall j$$

Finding a Consistent Allocation

Proposition

Given expenses $(e_i)_{i \leq \tau}$, $(B_j)_{j \leq s}$, and $(L_{ij})_{i \leq \tau, j \leq s}$ finding whether there exists a consistent allocation $(A_{ij})_{i \leq \tau, j \leq s}$ is NP-Complete.

Implications of Complexity

Bureaucracies face NP-Hard problems

Hence they can pretend that a solution does not exist

Hence they might stick to known solutions (even if they intend to implement new decisions)

Conclusion

A theory of decisions without a utility function

Needs to be incorporated with utility-maximizing behavior of agents

In general, CBDT has both act and result

In prediction - only results

In this model (as in court decisions) - only acts.