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This paper provides an axiomatization of linear inequality measures representing
binary relations on the subspace of income profiles having identical total income.
Interpreting the binary relation as a policymaker’s preference, we extend the axioms
to the whole space and find that they characterize linear social evaluation functions.
The axiomatization seems to suggest that a policymaker who has a linear measure
of inequality on a subspace should have a linear evaluation on the whole space. An
extension of the preferences reflected in the Gini index to the whole space is
represented by a linear combination of total income and the Gini index. Journal of
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1. INTRODUCTION

This paper provides an axiomatization of linear evaluation functions' as
a representation of a binary relation on profiles of incomes. In particular,

* We thank Eddie Dekel-Tabak, Larry Jones, Ehud Kalai, Morton Kamien, David
Schmeidler, and Peter Wakker for comments and references. We are especially grateful to
John Weymark for many comments and suggestions.

' The term linear in the literature on income distribution means linear after arranging
incomes in an increasing order. Formally, let fe R", f=(/], .., f,) be an income profile and
let £ be the profile that is obtained from / by arranging the incomes in an increasing order.
We say that a social evaluation function J( £} is linear if there exists numbers a,, ..., a, such
that J(f)=3"_,a. /.
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the Gini index is obtained by a natural strengthening of the main axiom.
The paper is closely related to the work on the measurement of inequality
but the interpretation of the binary relation on the income profiles is
different. Here the binary relation is interpreted as a preference order of
society or a policymaker. Thus, if f and g are income profiles, /> g means
that if the policymaker had to choose between f and g she would choose
/. While the literature on inequality measurement (notably Atkinson [2])
clearly recognizes the relationship between social welfare and inequality, its
ultimate goal is to measure inequality per se. Thus, it attempts to find a
mathematical representation for a binary relation >* with the following
interpretation: f >*g means that f is more egalitarian than g. Clearly we
would not expect that > and >* coincide on the whole space of income
profiles. For example, a typical assumption on >* is relative invariance
which means that the level of inequality does not change when all incomes
are multiplied by the same factor. When one considers the relation >, such
a property is obviously unreasonable. However, if we restrict our attention
to some subspace of income profiles where the total income is fixed, then
it seems reasonable (or at least of interest) to assume that on such a sub-
space > and >* do coincide. In other words, when the total income is
fixed the policymaker determines her preferences according to her judg-
ment about the level of inequality.? If this assumption is made our results
can be interpreted as suggesting that if a policymaker has a linear measure
of inequality on some subspace then she should have a linear evaluation on
the whole space. In particular, the evaluation on the whole space can be
represented as the sum of total income and an appropriate inequality index
(ie., a function that represents the preference on the subspace).
Specifically, we consider two domains:

1. the subspace of income distributions with fixed total income;

2. the whole space.

We first provide an axiomatization of a linear evaluation function on the
subspace (the Gini index is obtained by a natural strengthening of the main
axiom). Then we show that an “innocent” modification of one of the
axioms implies a linear evaluation on the whole space. We do not see how
this modification can be rejected while the original axiom is accepted.
However, this, of course, is an intuitive claim and the reader will judge it
for himself. The Gini index has acquired a special status and it is therefore
of interest to derive the representation of a Gini index on the whole space.
Specifically, let > be a preference order on the whole space with the

2 For example, Ebert [6] (and in a different way Sheshinski [15]) studies preferences on
the whole space that are derived from a preference order on pairs of total income and an
inequality index, where the inequality index represents the preference on the subspace.
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property that its restriction to some subspace is a Gini preference order
(i.e., the Gini index represents the preference). Let f= (f}, ..., f,) denote an
income profile. If > still satisfies our axioms then it can be represented by
a function J(f) where J(f)=%7_,fi—0% cic;cnlfi—fil for some
0<dé<1/(n—1). Thus, our result is that a Gini preference on the whole
space can be represented by a linear combination of total income and the
Gini index. Let us emphasize that, on the whole space, J(f) is different
from the Gini index, which is equivalent’ to

1

X LAl

n
i=lf;' Igi<j<n

This of course is not surprising since the interpretations of J(f) and the
Gini index on the whole space are different. The Gini index is an inequality
index; it can represent the preference of a decision maker only on the sub-
space where the total income is fixed. When two profiles that do not belong
to the same subspace are compared, the total income should be taken into
account as well.

Linear evaluation functions have been studied by Donaldson and
Weymark [5], Meheran [9], Weymark [18], and Yaari [19], among
others. (More general inequality measures were also discussed by Ebert
[73) Our axioms for the whole space are actually similar to those of
Weymark and Yaari. In fact, our axiomatizations of a general linear func-
tional on the whole space turn out to be a minor variation on a result by
Weymark. (Yaari considers a model with a continuum of individuals;
therefore, his proofs are different.)

However, all the previous work we are aware of deals with the whole
space. By contrast, our focus is on a subspace (of fixed total income) and
on the relationship between it and the whole space of income profiles. Thus,
our results allow one to judge the reasonableness of linear functionals in
general, and the Gini index in particular, as pure measures of inequality,
neutralizing total-income effects. This, in turn, suggests some analogies
between the measurement of inequality per se and the income-equality
trade-off.

It should probably be made clear at the outset that we are not trying to
defend linear evaluation functionals, nor to attack their appropriateness.
The reader is likely to be a better judge of that. We simply note that the
most salient drawback of linear measures is that the effect on the social
welfare of a transfer of income from one individual to another depends only
on the ranking of the incomes but not on their absolute levels. On the
other hand, linear measures and in particular the Gini index are simple

3 That is, when the size of the population is fixed.
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functions, and as this paper and the work mentioned above show, they
involve a simple set of assumptions. This simplicity is probably the main
reason for the leading status of the Gini index in applications. In any case,
our aim is to provide as-simple-as-possible axioms which are equivalent to
the linear (or Gini) representation and to point out the conceptual linkage
between the subspace and the whole space.

The paper is organized as follows. Section 2 contains a description of the
axioms and the results. The main steps in the proofs are given in Section
3, while standard ones are relegated to an Appendix. Section 4 concludes.

2. NOTATION AND RESULTS

Let N={1, .., n) be the set of individuals. Let the income profiles (or
simply “profiles”) be

F={f No>R|f(i)>0VieN},

to be identified with R” . In the sequel we will not distinguish between f(i)
and f.

Since we will be interested in subspaces across which total income is
constant, it will prove useful to define, for C =0,

Fcz{feF

> f,=C}.

ieN

Some of our axioms will involve an assumption of order preservation,
i.e., that two profiles do not change the income-ordering of individuals. In
general, this condition (on pairs of profiles) is called comonotonicity (see
Schmeidler [14]). However, since we will in anycase impose a symmetry
axiom, it will facilitate notation to simply focus on monotone profiles.
Define, then

Fy={feF|f,<fi, for1<isn—1}
and

Fy=FCnF,.

For a permutation n: N— N, and feF, define nfe F by (nf),=fn.
Obviously, #(F€)=FC¢ for all C>0. For every feF define f*'=
(fND, £, ., f™) to be the element of F,, for which there exists a permuta-
tion m: N — N satisfying /) = nf. Note that / is uniquely defined even if
7 1S not.
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For fe Fand i, je N, i is said to f-precede jiff f,;< f; and thereisno ke N
for which f; < f, <f.

Let =< Fx F be a binary relation, to be interpreted as a preference
relation. We will now formulate some axioms on »>>. These axioms are
parametrized by a set of profiles H < F; the theorems will be stated with the
axioms required to hold for H = F, F¢, F,, or F§,.

Al (H). Weak Order. > is complete, ie., for every f,ge H, f =g or
g =/, and transitive: for every f, g, he H, f =g and g = h imply that f =h.

We use the regular notation of <X =2""={(f,2)|(g.flex}; ~=
FOS; =2\~ <=x\~.

A2 (H). Continuity. For every fe H the sets {geH|g>/}, {geH|
g=<f} are open in H. (That is, in the topology on H induced by the
natural topology on R".)

A3 (H). Symmetry. For every f,geH, if there is a permutation
n: N — N such that g = nf, then f~g.

A4 (H). Monotonicity. For every f,geH, if f;>g, for all ie N and
f;>g, for some je N, then f>>g.

The next two axioms all require some consistency between choices. They
have a flavor of Savage’s sure-thing principle (Savage [11]), but they also
implicitly presuppose that utility is linear in income.

A5 (H). Order-Preserving Gift. For every f g, f.geHnF, and
ieN, if f,=f and g,=g; for all j#i, and f; =f;+1, g;=g;+t for some
teR, then f =g iff /' =g

AS says that the preference between two profiles of f and g, which agree
on the social income-ordering, should not change if the same individual /
receives a “gift” ¢ in both fand g, provided that the resulting profiles f’ and
g’ respect the same ordering. The logic behind it, which one may accept or
reject, can best be seen if one first considers the cases it excludes: if, for
instance, f and g do not agree on the social income-ordering, individual i
may be the poorest in f and the richest in g. Increasing his income would
therefore have a different effect on the inequality in f and in g, and the
preference between them may well change. Similarly, even if both fand g
are monotone, a gift of ¢ to individual / may make him richer than (i + 1)
in f, but leave him poorer than (i+ 1) in g. Again, this asymmetric impact
on inequality may give rise to preference reversal.

It is only in the cases where the above do not happen that AS can be
invoked to deduce that preference reversal should not occur.

Note that for H< F€ A5 is vacuously satisfied, since for t #0, /" and g’
do not belong to F€ if f and g do. Hence, we will need a total-income



448 BEN PORATH AND GILBOA

preserving version of it, which will deal with transfers (from one individual
to another) rather than gifts. However, we formulate it in a potentially
stronger form, as explained below.

A6 (H). Order-Preserving-Transfer. For all f,g,f',¢g’e H and i, je N,
if the following hold,

(i) if- g-f'- and g'-precedes j;

(i) fi=fi+t gi=g+!
fi=f—1 g;=g;,—t forsomer>0;and

(i) fi=fi gi=gx forké¢{ij},

then f =g iff /' =g

To better understand A6, let us first consider the case of H = F¢, (as will
be done in Theorem A below). For this A, A6 is the “natural” reformula-
tion of AS when one is restricted to a constant-total-income hyperplane.
Indeed, A5 (F,,) implies A6 (FS,), as is easily verified.

However, we will also use A6 for H=F€ (in Theorems B and D), in
which case it makes a stronger claim: starting out with some f, ge F<, [’
preseves the order of f, as does g’ with respect to g. But A6 requires that
there be no preference reversal even if f and g do not agree on the social
ordering. In particular, the pair (4, /) may be the poorest in f and the richest
in g, yet a transfer from j to { should not, according to A6 (F€), change the
preference between f and g. The distinction between general linear welfare
functions on F¢ and the more specific Gini index will be whether A6 is
required to hold on F¢, or on all of FC.

A7 (H). Inequality Aversion. Forallf, f'eF, nH and 1 <i<n, if

fi=f, forall j¢(ii+1)

fi=fittfio=fie —t, for some >0,

then /" > f.

A7 simply states that a transfer of money from an individual to the next
richest one, in such a way that the social income-ordering is preserved, will
result in a strictly preferred social profile. Thus, A7 is a weak version of the
famous Dalton—Pigou principle which states that a transfer of money from
a rich person to a poor person, which leaves the rich person richer, will
reduce inequality.

We will say that “>= satisfies 4n on H” if 2= satisfies An(H).

We can finally formulate our main results:
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THEOREM A. For every C>0 and every = = FCx F€ the following are
equivalent:

(i) >= satisfies A1, A2, A3, and A7 on F€, and A6 on F§,.

(ii) there is a vector p=(py, ..., P,) With p,>p,> --- >p, such that
for all f,ge F€,

fre=Y pf"2 ) pig"

ieN ie N

Furthermore, in this case the vector p (in (1)) is unique up to a positive affine
transformation.

THEOREM B. For every C>0 and every = = F<x F€ the following are
equivalent:

(i) 3= satisfies A1, A2, A3, A6, and A7 on F€;
(ii) for all f,ge FC,

frg= Z |f._fj|< Z lg:i—gl.

I<i<jsn €i<j<n
THEOREM C. For every = S Fx F the following are equivalent:

(i) = satisfies A1, A2, A3, A4, AS, and A7 on F,

(ii) there is a vector p=(p,, ... p,) with p,>p,> --- >p,>0 such
that for all f,ge F,

Sre=Y pf"2 ) p.g®.
ien ien
Furthermore, in this case the vector p (in (i1)) is unique up to multiplication
by a positive scalar.
THEOREM D. For every = < Fx F, the following are equivalent:

(i) 2= satisfies Al, A2, A3, A4, AS, A6, and A7 on F;
(1) There is a number 6, 0 <8< 1/(n— 1), such that for all f, g€ F,

frgeSfi-5 Y fi~fl=Y a-5 Y la-gl

i=1 ISi<j<n i=1 1<i<j<n

Furthermore, in this case the coefficient o (in (ii)) is unique.



450 BEN PORATH AND GILBOA

Theorem A provides a characterization of linear evaluation functions on
the subspace. Theorem B states that the Gini index is obtained if, in addi-
tion to the assumptions in Theorem A, we require that the order-preserving
transfer axiom apply to every pair of profiles f and g (and not only to pairs
of profiles that agree on the social ordering). Theorems C and D are the
counterparts of Theorems A and B, respectively, when the whole space of
income profiles is considered and when we add A5 (F). Thus, Theorem C
characterizes a linear evaluation function on the whole space,® while
Theorem D provides the representation of an extension of the preferences,
reflected in the Gini index, to the whole space. Note that the preference on
the whole space is represented by a linear combination of total income and
the Gini index.

We now want to suggest that a decision maker that satisfies A6 (F¢,) on
the subspace should satisfy AS (F) on the whole space. As we noted, A5 (F)
implies A6 (F¢,) because a transfer from i to j can be obtained by a gift to
j and a “negative” gift to i. Thus, A6 (F$,) is obtained by putting a certain
restriction on the application of AS (F), namely, that a gift to one person
should be offset by a negative gift to another person. We do not see why
a decision maker would accept A5 (F) with the restriction but not without
it. One could, for example, object to A5(F) on the grounds that the effect
of a given gift to individual i on social welfare should depend on total
income (and not only on the rank of the individual involved). However, if
the decision maker satisfies A6 (F$;) on the subspace, it means that the
effect of a given transfer between two individuals on the evaluation function
depends only on the rank of the individuals involved but not on their
absolute level of income. Hence, our reponse to the above objection is
that it seems inconsistent for a decision maker to evaluate a change
in individual ’s income according to total income, but not to take
into account i’s own income. We hope that our results are of interest
whether the above view is accepted or not. However, if this view is
accepted then the implication is that a decision maker who has a linear
evaluation function on the subspace should have a linear evaluation on
the whole space as well. In particular, if the preference of the decision
maker on the subspace corresponds to her evaluation of inequality then
the results can be interpreted as follows: if a decision maker has a linear
inequality measure on some subspace then she should have a linear evalua-
tion function on the whole space. In particular, if the decision maker
evaluates inequality according to the Gini index, then her evaluation
on the whole space is a linear combination of total income and the Gini
index.

¢ Theorem C is a simple corollary of Theorem 3 in Weymark [18]. We are grateful to an
anonymous referee for pointing this out.
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3. PROOFS AND RELATED ANALYSIS

3.1.  Proof of Theorem A

A few words on the strategy of the proof may be in order. Our main tool
is axiom A6, which guarantees that an order-preserving transfer of income
t from j to i, where i (immediately) precedes j, does not alter the preference
between two profiles. We will first extend this condition and show that it
applies even if i and j are not consecutive in the income ordering (Lemma
3.1.1), and that any transfer vector whose addition is order-preserving may
be added to two profiles without reversing the preference between them
(Lemma 3.1.4).

As explained in more detail in the sequel (following the proof of Lemma
3.1.4), this result will allow us to define the “substitution rate” between
transfers from j to i and transfers from 7/ to & for some i, j, k, le N. This
rate, denoted by o, will measure how many dollars should be transferred
from j to i to have the same equality impact as a single-dollar transfer from
[to k.

These substitution rates, which will be shown to be well behaved, will
give rise to the linear representation. Many of the proofs which follow are
standard, if not straightforward. We therefore relegate some of the more
tedious ones to the appendix. In these cases we provide here the “Idea of
Proof.”

We now turn to the proof. First, note that, in view of A3, it suffices to

provide a vector p=(p,, .., p,) such that for all £, ge FS,,

frg<= Z p.fi= Z Pi8i
ieN ieN

We first need some auxiliary results, which will strengthen the main
axiom, i.e., A6 (FS,). It will prove useful to focus on the interior of F¢,,

(Fy)’={feF 10<fi<fo< - <[y}

All the following lemmata and claims in this subsection are steps in the
proof of (1) = (ii) and presuppose (i).

We will now show that a transfer from individual j to i, which respects
comonotonicity, does not induce preference reversal.

LEmMma 3.1.1. Forall f,g /', g €(F$)° and all i,je N, i #j if
fi=fis  g=gc forall ké¢d{ij}

and for some te R
fi=fi+t  gi=g.+t

fi=f—t  g=g—t
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then
Sre it frg

Idea of Proof. To transfer ¢ from j to i, say, when j > i, one may transfer
t from j to (j—1), from (j—1) to (j—2) and so forth. However, such
transfers may lead us out of FS,. Thus, instead of transferring all of 7 at
once, one may make repeated transfers of small enough ¢. ||

Remark 3.1.2. Note that for F¢, the same result cannot be similarly
proven. Consider, for instance, f=(0, 1, 2) and "= (1, 1, 1). Although one
can obtain f' from f by a single order-preserving transfer from 3 to 1,
no (finite) sequence of order-preserving transfers between “adjacent”
individuals would yield f’ from f.

Obviously, an “infinite” sequence will do the trick, ie., f° can be
obtained as the limit of £, where each f, can be obtained from f by a finite
sequence of adjacent transfers. However, starting from f > g, continuity of
7 only guarantees /' = g’, which is not sufficient for our purposes.

This is the main reason to focus on (F§,)° (rather than F¢,) first. Only
when enough structure is proven to exist in the preference over (F¢,)° will
we use continuity to derive the representation on its boundary as well.

We will also need the corresponding extension of A7 :

LEMMA 3.1.3. Let f,f € (FS,)°, where for some 1 <i<j<n and some
1>0,

fi=ft fi=f-t
and
fi=fe  forall ké¢lij},

then f” > f.

Proof. As in Lemma 3.1.1, by successive applications of A7 and
transitivity. |

A further extension of A6 is the following:
LEMMA 3.14. Let f, g, 1", g €(FS,)°, where ["=f+1, g =g+t for some
teR” Then f =g iff /" =g

Idea of Proof. By induction on the maximal index i/ such that / is
involved in the transfers. |
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Equipped with these tools, we now turn to the main step of the proof.
The general strategy is as follows: for every triple (i, j, t), where 1 <i<j<n
and reR, consider the “improvement” obtained if, in a given profile, a
transfer of ¢ from j to i takes place. We will show that these triples can be
ranked (in terms of the “size” of improvement) regardless of the base
profile. We will further show that this binary relation is homogeneous, i.e.,
that the improvement in (i, j, t) is “greater” than that implied by the
transfer (k, /, s) iff the same holds for (7, j, at) and (%, /, as) for a>0.

This homogeneity will give rise to coefficients o, which will provide the
substitution rate between transfers from j to i and transfers from / to k. We
will show that a given profile is equivalent to a profile generated from it by
offsetting transfers (according to these substitution rates).

Next we will use these coefficients o, to define the “weights” p, and will
show that the weighted avarage J(F)=Y,p.f; is also unaltered when
offsetting transfers are made. Finally, each profile f will be “normalized” (in
some appropriate sense) by a sequence of offsetting transfers and it will
only remain to show that J(«) represents = on the normalized profiles.

Let us begin by using the following notation: for fe F, i,je N, and
teR, let f,,,€R" be given by f, ,,,=f—te’ + te’, where e’ is the i-th unit
vector.

Denote T={(i,j, 1){1 <i<j<n, teR}.

Lemma 3.15. Let f,g€ FC, and (i, t), (k, [, 5)e T be such that

C 0
Sison Jirsys &gy &krm € (Fyg).

Then, fi. ;0 Z Skt W 8.0 2 Eiktior-

Proof. Let i=g—f, and use Lemma 3.1.4 (with f=f,, ., 8=/
f’ =gl|,_1.l)’ g~,=gk,l..\-))- l

In view of this lemma , we will write (i, j, 1) = (>,~) (k, I, s) ifl there
exists /e F< such that £, ; ,, 2= (>>,~) fix..,, and both are members of (F§,)°.

LEMMA 3.1.6. Let (i,j, 1), (k, I, s)e T with t,s>0, and assume that for
some f.8€ F<, fii ;0> &ujo—oy Jikrsrs ikt -1 € (F3y)°. Then (i, j, 1) = (k, I, s)
if‘f(ija —t)< (k, I,_S).

Proof. Define h=(g., )1 _s€F and note that
Liij-0="Pu1s and 8- =Nijn

Considering 4 and f and applying Lemma 3.1.5 one obtains the desired
conclusion. |}
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LemMa 3.1.7. Suppose that for (i, j, t), (k,I,s)e T and a >0 there exist
1, 8€(Fy,)° such that £ ;s fikrasr &ujiys i) € (Fig)® Then (i, j, 1) 7
(k, 1, s) iff (i, ], at) = (k, I, as).

{Note that in the statement above the existence of f and g is only required
to guarantee that the triples involved are comparable.)

Idea of Proof. The main step is to prove the claim for natural « by
induction, using 3.1.4. The extension to rational and then irrational « is
standard. |}

As in the above proof we conclude that for every i </, k </ and for every
small enough ¢>0 there is an 5§>0 such that (i, r)~ (k, /, §). Further-
more, for s<3§ we have (i,j,1)>(k,I,s) and for s>5 (k,[,5)>(i, ], t).
Since, moreover, for x>0, s would correspond to 2z, we define

ai"k[ = 1/5_' > O.

i 1S @ substitution rate of sorts; it measures how much “money” should
be transferred from j to i to have the same (equality) impact as a single-
unit transfer from / to &.

Conclusion 3.1.8. For all (i), 1), (k,[,s)eT, with ¢,5s>0, if there is
fE (FK/I)O SUCh that f“‘j"" »f(k.l‘.s’)e(F,fxl)oa then (i,j, t)>(>'~~)(k’ laS) lff
12(>,=) 08

To simplify notation, we extend = to all of T, using 3.1.8 (together with
3.1.3 and 3.1.6) as the definition of > if such an f does not exist. (For
instance, if 1> C.)

We will need two properties of the substitution rates o,

LEMMA 3.1.9. For all i,j k,l,r,qe N withi<j, k<[, r<q,

aﬁkldkqu = O—ijrq .

Proof. Take 1, 5, u>0 such that (i, /, 1)~ (k, I, s}~ (r, g, u). Then
G =S
O pirg = S/U
and since (i, j, t)~ (r, g, u)
T g = 11 = (1/8)(5/U) = s Ohirg
LemMma 3.1.10. For all i,j, k, r, I with i<j, r <k <l|,

Ok + O s = O iy
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Proof. Let t, s, u, v>0 satisfy
(i, ), 1)~ (r, k, 5)
(i, j, u)y~tk, I, 5)
(i, j,0)~(r, 1 s)

whence
T i = 15
O kg = U/S
O iy = U/S

Further assume w.l.o.g. (without loss of generality) that all of 7, u, s, v
are small enough so that there is an fe F€ for which £, ; ), fiiw fiisers

f(i,j.l+ u)> f(r.k,sj’ f(k,l,:)’ flr,l.s) € (F;)O
Then we have

f(i,j,t)""f(r,k,s)

and, by Lemma 3.1.1,

(f[i,j.l))(i,j.ui ~ (f(r,k‘x))[i.j,u)'
However, since (I, j, u) ~ (k, I, 5),

(f(r, k_sj)(i,j,u] ~ (f(r k, s))(k, 1s)?
which implies that

(f(i,j,l))(i.j,u)N (.flr.k,s))(k,Ls)

or

f(x:j,r+u)~f<n1.s)s

whence t+u=r.
Finally, /s + u/s =v/s and

Ok + O ijiy = G iy |

We can finally define the weights p; for ie N: let p, =0, p,= —1 and for
2<k<n, pp=—03,. (So that

Oy = (P — PP —P2))

642/64/2-12
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Next define, for all fe F€,

J(f)= Z pite

k=1

We now wish to show that equivalent transfers have identical effect on J:

LeMMA 3.1.11.  Let (i, j, t), (k, [, s)e T satisfy (i, ], t)~(k, I, s). Then for
all fe F such that f, ; ) fu10 € (Fp)%

J(f(i.j,r))=J(f(k,[..s))-
Idea of Proof. Calculation using 3.1.9 and 3.1.10. J

As for the converse:

LEMMA 3.1.12.  Suppose that for some fe(F$,)° and (i, j,t), (k, 1, s)eT
such that fi; ; 1y furn € (F3)% J(fiis.0) = I fwrs))- Then (i,j, 1)~ (k, 1, 5).

Proof. By the computations of the previous proof one obtains

1012 =39 12445

1S = 0121/ 0 125 = O et
which suffices by 3.1.8. |}

We are approaching the final steps of the proof. It will be useful,
however, to have explicit mention of the following:

LEmMMA 3.1.13.  Suppose that (i, ], t), (k, 1, s) satisfy (i, j,t)~ (k, I, 5), and
assume that fe F satisfies

ﬁ.f(i,j,r)aﬁk,/,sp (.f‘(i,j,r))(k.l,Vxle(F/(\/;)o'
Then f~ (f(i.j,r))(k,l,—sj'
Proof. Since f|; ; ,,~fx..s)» we may use Lemma 3.1.1 to obtain
(f(i‘j,r))(k‘l,—s)'\'(f(k,l.s))(k.l‘—s)=ﬂ I

The next step is to show that for every fe (F},)° there is an fe(FS)°
such that f~f and J(f)=J(f), where f is normalized in some sense. If we
could choose f from F¢,, we would like it to be of the form («, 2, ..., 2, §),
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where § > «, and then to show, for the unique « and f determined by fe F€
and J(f)=J(f), that f' can be obtained from f by a sequence of pairs of
offsetting transfers (i, j, t), (k, ,—s), where 1t =0 s.

However, given that our results are guaranteed to hold for (F¢,)°, we
have to choose f which is strictly monotone. This does not make a funda-
mental difference, though it complicates both the statement and the proof.

LeMMA 3.1.14. Given fe(F5,)°, there is an £>0 such that for all
£€ (0, &) there are a=oa(e) and B= P(c) such that f,~f and J(f,)=J(f),
where f, e (F$,)° is defined by

(ﬂ);=a+(i—1)£ for i<n
(f)n=B.

Furthermore, x(¢) and B(&) are given by

n—1 -1
a=[ Zp.-—(n—l)pn]

i=2

B=["i1pi—(n—1)pn]\l

i=1

n—1 —1 -2 n—1
< €T pm -0 - 2T

i=1 i=1

+a(n—1)"z_; (i—l)pi:l.

Idea of Proof. First, one shows that for small enough &, £, is indeed in
(F$,)°. Next, one uses induction to construct, for k <n—1, a vector f*,
such that f* ~f, J(f%)=J(f), and the first k individuals are richer than
their preceding ones by & exactly. The derivation of f**! from f* is done
by transferring some money from k + 1 to each of 1, .., k and transferring
the rest to the richest individual », in such a way that preference (and
J-value) is preserved. |}

We can finally return to F¢,, including its boundary:

LEMMA 3.1.15. For every feFS, there is fe FS, with the following
properties:

- -

(i) fi=a  for i<n, f.=B  for some B=a;
(i) f~f and
(i) J()=J(f).
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Proof. Starting with fe (F€,)°, we obtain f., for every e€(0,&) by
3.1.14. Letting ¢ tend to zero, the explicit formulae of 3.1.14 show that fl
converge to some f € F,, satisfying (i). Condition (ii) would follow from
the continuity of >, while (iii) follows from the continuity of the (linear)
functional J.

As for fe FS\(FS,)°, let f, € (FS,)° satisfy f, — f, and let f, be the corre-
sponding profile for f,,. Given the explicit formulae of 3.1.14 we know that
£, — f where f satisfies (i). By continuity of J, (iii) also holds. Finally, since
> is continuous, it is also closed (as a subset of R?"), and since f, ~ f,,

f~i
It therefore suffices to show that J represents = on the one-dimensional
half-space {(a, o, .., o, )| (n—1a+p=C, fza>0}. Indeed, we have

LemMma 3.1.16. Let a, B,7, 6 satisfy f=za=0,5=7=0,
m—Da+f=mHr-1)y+6=C.

Then the following are equivalent:

(i) f—a<d—y;
(1) J{a, oy oy o, B> T, 75 s 7, 0));
(i) g=(a, 0 s o, B)> (7,7, s 7, O} =1

Idea of Proof. Standard continuity arguments. J
Employing symmetry of >, this concludes the proof of Theorem A. |}
3.2. Proof of Theorem B

Given Theorem A, we know that for every f, ge F©
freift ¥opifV2 3 pig?
ieN ieN
for some p, >p,> --- >p,. We now further assume that A6 holds on all
of F€.
LemMa 3.2.1. For every 1<i<n—1,
Pi=Pix1=P1— P2

Proof. Assume wlo.g. i>1. Choose fe(FS)°. Let e¢>0 satisfy
e<(1/2)(fiy—f;) for all 1 <i<n~—1, and define /' =f+ ee' —ee € (FS,)°.
Define a permutation n: N > N as follows:
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(i) ifi>2, n(l)=i =n2)=i+1
a(i)=1 =n(i+1)=2 and
nk)=k for ke¢{1,2,i,i+1}.
(i) ifi=2, n(1)=2 =#n(2)=3 =n(3)=1 and
nk)=k for k¢{1,2, 3}
Define g = nf, and note that in g, individuals 1 and 2 are ranked as the
i- and (i + 1)-poorest, respectively. Finally, define g’ = g + ce' — ge”.
By symmetry, f~g. However, individual 1 f-, f'-, g- and g'-precedes 2,
and A6(F€) implies that /'~ g’. Hence

S =N =J(g)—J(g),

where J is defined as in Section 3.1. This implies

e(py—p2)=e(pi—pis1)
which completes the proof of the lemma. |

To complete the proof of Theorem B, recall that for every a>0 and
beR the vector g=(q,, ..., q,) defined by ¢,=ap, + b also satisfies

fregift 3 q.f"2 % q:8"

ieN ieN
for all £, g e FC. Setting

a=2(n—1)/(p,—p.)
and
b=(n—1)[1-2p,/(p;—p,)]
yields
gi=n+1-2i
for 1 i< n. (Note that this makes use of the fact that p,—p,,.,=p,—p,

for all i)
On the other hand,

- X Mfi=fl=X (n+1-20)fO,

I<i<j<n ieN
and the theorem is proven. ||

3.3. Proof of Theorem C.

This theorem is a variant of Theorem 3 of Weymark [18], and so is its
proof. Weymark’s axioms are (1) symmetry-—our A3; (2) weak order—A2;
(3) continuity—equivalent to A2; and (4) “weak independence of income
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source,” which follows directly from our AS5. Thus, his Theorem 3 (p. 419)
implies that there exists a vector p={(p,, .., p,) such that

frg= Y pf=2Y pg"

ieN ieN
Imposing A4 implies that p,>0 for all ie N, while A7 guarantees that
p:>pio,foralli<n |

3.4. Proof of Theorem D
Given Theorem C, we know that for all f, ge F

fFeit 3 pf2 3% pig"
ieN ieN
with p, >p, > .-- > p, > 0. Furthermore, A6 is known to hold on F, and in
particular also on F€ for all C>0. Thus, by Lemma 3.3.1, p,—p,;, ;=
pr—prforall 1 <ig<n-—1

Setting
x=2/(p +p.)>0
and
__ o
(n=1)pi+p,’

it is straightforward to verify that for all 1 <i<n
ap;=1+(n—2i+1)é.

It only remains to note that, for all fe F,

Y l+(n=2i+1)81f"=Y fi—6 ¥ |fi—f

ie N ieN Isi<j<gn

and that 6 < 1/(n— 1) follows from p,>0. |}

4. CONCLUDING REMARKS

1. The functionals discussed in this paper are linear on cones of
vectors which agree on the income ordering of individuals, ie., cones of
“comonotonic” vectors in the sense of Schmeidler [14]. Indeed, these
functionals turn out to be Choquet integrals with respect to some non-
additive measures. (See Choquet [3].)
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Thus, the measurement of inequality literature is closely related to the
recent developments in the theory of choice under uncertainty (as opposed
to risk). In particular, the axiomatizations of Choquet-integral representa-
tions in the context of uncertainty may be reinterpreted to derive income-
inequality measures with non(-necessarily-)linear utility functions. The
reader is referred to the seminal papers of Schmeidler [12-14], as well as
Gilboa [8], Wakker [17], and Sarin and Wakker [10].

While these axiomatizations are formulated for spaces which correspond
to our space F, some of them may be adapted to a subspace F€. For
instance, Schmeidler’s axiomatization, which uses a mixture space (as in
Anscombe and Aumann [1] and as opposed to Savage [11]), may be used
to derive a representation on F, which is closed under convex combina-
tions.

While our Theorem A required a lengthy proof, we find it is using much
more intuitive axioms than Schmeidler’s “comonotonic independence.”
However, our main point could also be conveyed using his result: the
“same” axioms which are used to derive a linear functional on a subspace
F© will also yield a similar representation on all of F. It seems hard to
defend the axioms on the subspace while rejecting them on the whole
space.

2. It is sometimes convenient to model a population as a continuum
of agents endowed with a s-algebra, say, [0, 1] with the Borel sets. All our
axioms will have natural counterparts if one assumes a nonatomic
o-additive measure on these Borel sets to be given in the model. Symmetry
is then required to hold with respect to the group of measurable and
measure-preserving permutations, and the continuity of > should be
stipulated with respect to convergence in the measure. In this topology one
may approximate every profile by a simple profile, which is constant on
every element of an equi-measure finite partition. With the representation
theorems obtained above, the derivation of similar theorems for this setup
is then straightforward.

3. It is easy to verify that, in each of the theorems, the axioms are
independent. We omit the simple examples.

4. John Weymark suggested an alternative proof of Theorem A
which will first use a classical result (such as Debreu [4]) for a numerical
representation and then go on to show that the representing functional
is linear. We find our constructive proof more intuitive, or at least more
elementary. Admittedly, this is a matter of taste.

S. Finally, note that Theorem A provides a linear-representation on
F€ only for inequality-averse preferences. This condition, however, is not
crucial. We used it since it eliminates some non-insightful complications
from the proof, while being natural in our context.
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5. APPENDIX: PROOFS

Proor oF LEMMA 3.1.1. W.lo.g. assume that /i <j. Furthermore, w.l.o.g.
we can also assume that >0, for if 7 <0 one can switch the roles of f and

f',gand g
For he (FS,)° let

d(h)y= min (h;,,—h,).

I1<i<n

Choose ¢> 0 such that e<imin{d(f), d(f’), d(g), d( g')}. For integers
i<k<j and 0<r<|t/e J=M (where | x| denotes the largest integer
smaller than or equal to x), define

fox=f—ree’ +(r—1) e’ + ee*
g «=8—ree’ +(r—1)ee’ +ee,
where
e'eR"  satisfies  (e'),=1, (¢),=0 for s#L
Further, let 6 =t — Me >0 and define
Sars1x=F—(Me+ S)e’ + Mee' + Se*
Cmirk=8— (Me+d8)e’ + Mee' + de.

Note that for all integers i<k<jand 0<r<M+1, f,,, g, ,€(F5)% and
that

fi,=1 g1.,=8&
Smini=f5 Em+1.i=8
and
fr,i=fr+1,j§ gri=8r+1,j for r<M.
Finally, for k> i, A6(F¢,) implies that
fr,k?gr.kafr,kfl?gr,k—l

for all 0 <r< M+ 1, whence the result follows. |J

Proof of Lemma 3.14. We will prove the following claim for all
0<k<n Forall f,g,f,g €(FS)° such that f'=f+1, g =g+t for some
teR”and t;=0for all 1 i<k, f=giff f' =g Note that for k =0 this is
the desired result.
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The proof is by induction on {n—k). For k=n—1 or k =n the claim is
trivial since f' =f and g’ =g. Assume, then, that the claim was proven for
k=r+1 and consider the case k =r.

Let there be given, then, 1, /', g, g, and 1 as in the claim. Note that
fi=f:and g;=g, for 1 <i<r. Assume w.lo.g. that¢ <0 (If ¢t,,,>0,
reverse the roles of fand /', g and g'.)

Define f, g as follows:

fi=fi=f! gi=g,=g; for i<r
fr+1:flr+l é,+1=g:+1
fi=f, gi=8 for r+1<i<n

fn=fn—tr+1 gnzgn—tr+l'

It is easily verifiable that f, g e (FS)% Furthermore, f3=g iff f3=¢ by
Lemma 3.1.1. However, by the claim for k=r+1, f =g iff /' 2g". |

Proof of Lemma 3.1.7. First consider the case t, s > 0. Let us begin with
«=reN, and prove by induction on r.
Assume that fe (FS,)® and (i, j, 1), (k, I, s)e T are such that

f(i.j,r)’ Sikis)s f(i,j,n)a .f(k.l,rs) € (Fﬁ)o-

(Note that if f and g are given as in the lemma, for a > 1, ¢, s >0 we also

haVe .f(i,_/}tb ﬁk,l,s) S (Fgl)o)
Define, for O<v, u<r with v+ u<r,

hw = (fu,j,m)(k,l,,u)-
Note that

h,,e(Fy)® forall v,u>0 with v+pu<r
h0.0=f
hr,Ozﬁi,j,rl)’ ho,r=f(k,/,m-

Further observe that, forO0<v<r—land uy=r—v2=1,

hv,u = (h\‘,yfl)(k,l,s); h, s Lu—1= (hv,yvl)(i,j,r)’
whence,

By 2 R AT Gy 03 (K, 4, 5),

by definition of the latter relation, setting f=h, , . By transitivity we also
obtain

hr,0> h(),r lff (i,j’ t) ? (k5 la S)-
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We therefore conclude that for any positive integer o—hence for any
rational a—i(i, j, at) = (k, I, as) iff (i, ], t) = (k, I, s), whenever there are f
and g as in the provisions of the lemma.

Next consider irrational x> 0. It will here be useful to distinguish indif-
ference from strict preference. If (i, j, t) ~ (k, I, s), then for every rational «
(for which the involved triples are comparble) (i, j, at) ~ (k, /, as) and the
conclusion follows by continuity of >=. If, however, (i, j, t) > (k, [, 5), we
invoke Lemma 3.1.3 to deduce that (k, /[, 5)> (i, j,0) whence, again by
continuity, there is fe(0,7) such that (i j, )~ (k, I s). Therefore,
(i, J, af) ~ (k, I, as). However, Lemma 3.1.3 also implies that (i, at) >
(i, J, of). Hence, (i,/, 1) = (k, I, s) iff (i, j, at) = (k, [, as) for all positive o.

We can now turn to the cases in which s, 1, or both are not strictly
positive. Obviously, by 3.1.3 again, if t1>02=s or r=0>s, for all i< and
k<I(i,j, t)>(k, I, s) and the same holds for at, as where x> 0. Finally, the
case s, ¢t <0 follows from s, 1> 0 in view of Lemma 3.1.6. ]

Proof of Lemma 3.1.11. Note that

J(.f(i,j,l)) =J(f)+ ’(Pi_Pj) =J(f)+ t(o'mj_ 01217

(with ¢,,,, =0).
Similarly,

J(Swr)=IS)+5(0120— 0 1214)-

However, by Lemma 3.1.10,

01217~ 0121 = O 125
0121~ 01216 = O 1244+
Hence,
J(Sn)=J(f)+ 10,
IS ers)) = J(f) + 50 1201

However, ¢ =50, and, by Lemma 3.1.9,

1613 = SO 3;0 125 = 56 10

Proof of Lemma 3.1.14. It is straightforward to check that should 1.
belong to F€ and satisfy J(f,) = J(f), « and f can be computed from these
two equations and should equal the expressions above.

These horrendous expressions are given here explicitly for two reasons.
First, we must convince the reader that this system has a unique solution
(which is obvious since p;> p; for i<j in view of A7), and that for small
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enough ¢ it will be in (F$,)° To this end, note that—again, since p, are
monotonically decreasing--J(f)=3"_, f; p;> p.c. Hence, a > 0 for small e.
Further,

1 -1 n

p=a=| T p-t-p| €T pi-nit)|+ 000
i=1 i=1

and-—once more by monotonicity of p,—the first two terms are positive.

The second reason will become clear later on, when we shrink ¢ to zero
and claim convergence of f

Let £ be small enough, then, to guarantee that fce (F$,)° and to satisfy
E<(fi—fi_)forall 1 <i<n.

Considering e€ (0, £), we will show that for every 1 <k<n—1 there
exists f* such that (i) (f"),—(f"),Al =¢ for 2<i<k; (i) (f5,-
(f8)ic = efor k<i<n (iii) £ ~ f; and (iv) J(f%) = J(f). The proof is by
induction on k, and the existence of /7~ ' = f will complete the proof of the
lemma.

For k=1, condition (i) is vacuous and we may take f!=/f Assume,
then, that f* was found and consider f**' (for k <n—2).

If (%) — (%) =¢, we may choose f**'=f* Assume then that

P = e=e+1, for 1>0.

One may obtain £ “*! from f* by the following process: we will make an
identical transfer s >0 from k+ 1 to each of 1, ..., k, and a transfer of r >0
from k + 1 to n, such that these transfers will offset each other. However,
in order to use Lemmata 3.1.5 and 3.1.11 (which will guarantee the preser-
vation of properties (iii) and (iv)) we need to split this transfer into a
sequence of pairs of offsetting transfers.

First, we set

r=t[ Z (Pi—Pis )+ e+ 1)(piy i — p,.)]f Yo Api—Pist)

i=1
s=f[
i

Note that r, s >0, and that

(Pi— P )+ (k+ 1)(Pk+1_Pn):|_ (Piv1—Pn)

EM" h

r+k+1)s=

r(Pes1=Pa)=5 2 (Pi—Pus1)
i=1
The first equation guarantees that the difference (f%),.,— (%), will be
decreased by ¢ exactly. The second one—that the overall transfers will
preserve the value J(f%).
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We now split these transfers as follows: for 1 <i<k, define

Fi=(Pi—Pi v ) (Pisr —Pa)s.
Note that r,>0 and Y*_, r,=r. Next define f*°=f* and for 1 <i<k,

Yy — ki~
(f‘ff ')_ ((fp ! l)(k+l*l’,k-{—l,s))[k+l,n,7rk,1,,>) .

That is, we first transfer r, from k+1 to n and s from £+ 1 to k. Only
then do we transfer r,_, from k+ 1 to », and s from £+ 1 to k— 1, and

so forth.
Thus, %" e (FS,)° for 0 <i<k. Furthermore,

k+1—0k+1,s)~k+1,nr,,_,)

by 3.1.12. Hence, by 3.1.14, f*i~ f&i=Vand J(f5y=J(f%"~ ") for all i< k.
In particular, for i = k we obtain f** ! satisfying (i)-(iv), and this completes
the proof of the lemma. |

Proof of Lemma 3.1.16. The equivalence of (i) and (ii) follows from the
definition of J, combined with the observation that p,> p, for i <j. To see
that (i) implies (iii), consider f, € F< defined by

(fi=y+(i—1e 1<i<n
(fa=0—3(n—1)(n—2)e

If ¢ is small enough for f,e FS,, f, can be obtained from f by successive
adjacent transfers of size ¢. Thus, by A7, f, > f. Choose ¢ > 0 such that

(f),>Band (f.), ;<
Similarly, for p >0 consider g, defined by

(go)i=a+(i—=1)p 1<i<n
(gp)n:ﬁ_%(n_l)(n_z)p

Consider p small enough so that g, e F§,. Since f,, g, € (F§,)°, g, may be
obtained from f, by successive adjacent transfers. Hence, g, > f,. Letting p
tend to zero, one concludes that g =f, > f, and (iii) is proven. Finally, since
B —a=0—y immediately implies that f~ g, (iii) = (i) follows. |}
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