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Abstract

An affine tree is a binary decision tree whose leaves contain linear regression
equations. It is suggested as a model of the way economic agents reason by
rules, combining logical conditions with algebraic formulas. Finding optimal
affine trees is computationally hard, and we, therefore, focus on trees with
a single bifurcation. We estimate them on real estate data and show that
they perform better than hedonic regression. A by-product of the analysis is
the finding that rule-based models, (including standard OLS), fit sales prices
better than rental prices, indicating a stronger influence of rule-based thinking
in speculative trade compared to consumption decisions.

1 Introduction

Hedonic regression is a basic tool for the evaluation of real estate prices. It suggests
a simple algebraic rule for the assessment of a property’s price based on a set of
observable variables, and it lends itself to a natural interpretation as a model of
the way agents think about prices. However, the rules economic agents employ
in order to evaluate assets are not restricted to algebraic formulas. People often
reason according to logical conditions (“if-then-else”) as in association rules and
other machine learning techniques. We suggest that logical conditions and linear
formulas can be combined to generate a useful model of the way economic agents
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assess asset prices. For example, people can draw a qualitative distinction between
geographical areas such as a city’s center and its suburbs, and assess prices per square
foot separately for these two. Alternatively, they may think differently about “new”
and “old” buildings, using a cutoff (such as WWII) to separate them, and then apply
different hedonic regressions to the two subsets.

In this paper we assume that the data generating process is of this type. More
explicitly, there are m real-valued predictors x1, ..., xm used for predicting a real-
valued y. For an index j′ ≤ m and a cutoff c ∈ (−∞,∞], the data generating
process is defined by

yi =

{
β0 +

∑m
j=1 βjx

j
i + εi xj′ ≤ c

γ0 +
∑m

j=1 γjx
j
i + εi xj′ > c

(1)

where (β0, β1, ..., βm) , (γ0, γ1, ..., γm) ∈ Rm+1 are regression coefficients and εi are
i.i.d. random variables with zero expectation. (The case c = ∞ is included to
allow for a simple regression model, with no bifurcation, as a special case.) Such
models have been discussed in the literature where the identity of the branch-
ing variable, j′, is known, and the cutoff c is estimated from the data (alongside
(β0, β1, ..., βm) , (γ0, γ1, ..., γm) and the variance of εi).

1 For example, Andrews (1993)
assumes that the branching variable is time, and estimates the cutoff c. By contrast,
in our model j′ also needs to be estimated from the data, in conjunction with the
aforementioned parameters (see also Hansen, 1999, 2000, and, 2017)

One may view our model as a rather special case of a “decision tree”, where
multiple binary bifurcations are allowed, each defined by the condition xj′ ≤ c for
some j′ ≤ m and c ∈ R. We refer to such a tree as an affine tree.2. Decision trees
have been used in machine learning for several decades by now (for a recent survey,
see Sharma and Kumar, 2016). In recent years they have also been adopted by
empirical research in economics. For a recent survey of the literature the reader is
referred to Varian (2014) and Mullainathan and Spiess (2017). However, to the best
of our knowledge, they have not been used as a model of the way economic agents
think or evaluate numerical magnitudes.

Thinking of an affine tree as a psychological model of the way people think,
one may wonder how complex they can be. Indeed, we prove that finding the best

1One may consider a branching variable that is not one of the m variables used in the regression
equations. Alternatively, if we allow the model to have some of the coefficients (βj , γj)j to be
restricted to zero, the branching variable may be included in the m variables we start out with.

2The term “decision tree” is most often used for a classification problem, where y is binary. A
continuous y is often referred to as a “regression tree”. By contrast, we allow for a linear regression
function at each leaf, and thus opt for the name “affine tree”.
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affine tree (in terms of best-fit and tree size) is an NP-Complete problem. Thus,
our focus on simple (single-bifurcation) trees as in (1) follows from our psychological
interpretation of the model. We applied our model to real estate data from various
cities in South America, including Sao Paulo, Buenos Aires, Bogota, Lima, Quito,
and Montevideo, which are available online. We estimated different affine trees that
correspond to different bifurcation variables, and demonstrated that these estimated
affine trees outperformed the simple hedonic regression based on AIC and other
measures. Moreover, we conducted a bootstrap analysis, which revealed that the
hypothesis that the data are generated by a (no-bifurcation) hedonic regression can
be rejected in favor of the alternative of a (single-bifurcation) tree, which holds for
all bifurcation variables. We take these findings as evidence that the introduction of
bifurcations into hedonic regression models may result in better models despite the
added complexity. Finally, we contrast the analysis for sales data with a comparable
analysis of rental prices. We find that, with bifurcation trees as well as with simple
hedonic regression, the model performs better on sales than on rent data, and we
offer an interpretation of this qualitative result.

The rest of this paper is organized as follows. Section 2 defines the generalization
of (1) to affine trees and provides the complexity result regarding optimal trees.
Section 3 applies the method to the real estate data, estimating single-bifurcation
trees and contrasting them with hedonic regression. Section 4 compares the analyses
for sales and rental prices. Section 5 concludes with a discussion.

2 General Model

We consider real-valued functions y = f (x1, ..., xm) of real-valued variables (x1, ..., xm)
defined as follows. An affine tree is a tuple Tr ≡ (V,E, r, L, b, c, p, d), where

– V is a non-empty and finite set of nodes;
– E ⊂ V × V is a set of directed edges defining a graph G (V,E) that is a tree;
– r ∈ V is the root and L ⊂ V is the set of leaves of G (V,E);
– b : V \L → {1, ...,m} determines according to which variable a bifurcation is

made at each non-terminal node (v ∈ V \L);
– c : V \L → R determines the cutoff value at such a node (v ∈ V \L);
– p : V \L× {0, 1} → V is the bifurcation function, such that for every v ∈ V \L

there are exactly two edges (v, p (v, 0)) , (v, p (v, 1)) ∈ E;
– d : L → Rm+1 assigns to each leaf v ∈ L a vector θ = (β0, β1, ..., βm) ∈ Rm+1
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which is used to define an affine function of x1, ..., xm,

y
(
x1, ..., xm

)
= β0 +

m∑
j=1

βjx
j.

A computation of an affine tree (V,E, r, L, b, c, p, d) for input x = (x1, ..., xm) ∈
Rm is a pair ((v1, ..., vk) , y) such that

(i) (v1, ..., vk) ∈ V k is a path from the root to a leaf: v1 = r; (vl, vl+1) ∈ E for
every l < k, and vk ∈ L;

(ii) the path follows the bifurcations dictated by (x1, ..., xm): for every l < k,
vl+1 = p (vl, 0) if x

b(vl) ≤ c (vl) and vl+1 = p (vl, 1) if x
b(vl) > c (vl);

(iii) y is the value defined by the function at node vk, that is y = β0 +
∑m

j=1 βjx
j

where (β0, β1, ..., βm) = d (vk).
That is, the computation path begins at the root, and considers the variable xj for
j = b (r). If xj ≤ c (v1), the path continues to v2 = p (v1, 0), and if xj

j > c (v1) – to
v2 = p (v1, 1). It then continues to consider j′ = b (v2) and proceeds inductively until
it reaches a node vk ∈ L. Let fTr = f (V,E, r, L, b, c, p, d) be the function (from Rm

to R) defined by the computation of the tree Tr ≡ (V,E, r, L, b, c, p, d).
A database consists of observations of x = (x1, ..., xm) and y. More formally, a

database is a tuple B = ((xi, yi))1≤i≤t (where xi = (x1
i , ..., x

m
i ) ∈ Rm, and yi ∈ R).

The statistical model we are interested in involves data generating processes that are
based on affine trees. Specifically, we will assume that there exists a true underlying
function tree Tr, such that, for each t ≥ 1,

yt = fTr (xt) + εt

where (εt)t are i.i.d. random variables with zero expectation. We assume that
economic agents attempt to understand the reality they are faced with by trying
to fit the “best” affine tree to a given database. The degree to which a given tree
Tr = Tr (V,E, r, L, b, c, p, d) fits the database B = ((xi, yi))1≤i≤t is measures by the
sum of squared errors:

SSE (B, Tr) =
t∑

i=1

(yi − fTr (xi))
2

We will also assume that agents trade off goodness of fit with complexity. That is,
they tend to prefer simpler trees over more complex ones. We consider the following
two ways to measure this complexity:

(i) The number of variables used is the tree, NV (Tr) ≡ |Im (b)|
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(ii) The number of decision nodes, ND (Tr) ≡ |V \L|.
Note that, for every tree Tr (V,E, r, L, b, c, p, d) we have

|V | = 2ND (Tr) + 1

NV (Tr) ≤ ND (Tr)

A low NV (Tr) would be desirable, other things being equal, because it implies
that the size of the database one needs to recall and process is small. By contrast,
a low ND (Tr) means that the entire tree is relatively easy to recall and describe.
Thus, there are reasons to assume that, other things being equal, people tend to
prefer simpler trees according to each of these measures. It stands to reason that,
in reality, people tend to trade off these three notions of complexity, as well as to
trade off simplicity with goodness of fit. To capture this tradeoff we formulate the
following problems.

Problem 1 MIN-NV Given a database with rational values, B = ((xi, yi))i≤t, an
integer k ≥ 1 and a rational a ≥ 0, is there a function tree Tr (V,E, r, L, b, c, p, d),
with |Im (b)| ≤ k and SSE (B, Tr) ≤ a ?

Problem 2 MIN-ND Given a database with rational values, B = ((xi, yi))i≤t, an
integer k ≥ 1 and a rational a ≥ 0, is there a function tree Tr (V,E, r, L, b, c, p, d),
with |V \L| ≤ k and SSE (B, Tr) ≤ a ?

We can state3

Theorem 1 MIN-NV and MIN-ND are NPC.

This result suggests that we wish to focus on small trees. A statistician who
needs to compute maximum-likelihood trees within a class (defined by NV or ND),
faces a computationally complex problem. Should the tree be too large, it will be
impractical to find the best one. But, more importantly, one might argue that, for
the same reason, people are unlikely to be using large trees. Apart from the cognitive
costs associated with remembering the tree and implementing its computation, larger
trees are also less likely to be the optimal ones in their respective classes.

3Many problems related to minimal decision trees are known to be NPC. However, we are
unaware of a proof of the result regarding affine trees. Note that, while affine trees are much richer
than decision or regression trees, it does not automatically follow that finding the optimal tree in
a given class is more complex than finding the optimal tree in a subclass thereof. Specifically, the
continuous and algebraic structure might simplify the optimization problem (as in the famous case
of linear programming).
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3 Application

3.1 The Data

We downloaded a database of real estate properties from Kaggle, an open-source
platform that allows users to freely access various databases. It was comprised of
listings of apartments for rent and sale in Sao Paolo, Brazil that were gathered from
multiple real estate websites during April 2019.4

The Sao Paulo data included information about the advertised price, condo-
minium fees, exact location (latitude and longitude), size, number of rooms, and
other characteristics such as number of parking spots, and number of toilets. We
created an additional variable that measured the distance of the apartment from Ana
Rosa terminal, which is located in the city center. There were 13,640 observations in
the dataset, of which approximately 4,000 were omitted due to duplication, missing
information regarding their precise location or condominium fees, or because they
were outliers. The complete list of variables and their descriptive statistics appear
in Appendix B in Table 4.

We also obtained 5 more databases from Kaggle on real estate property listings in
Argentina, Colombia, Ecuador, Peru, and Uruguay for 2019.5,6 We focused on apart-
ments for rent and sale in the capital cities, Buenos Aires, Bogota, Lima, Quito, and
Montevideo. The databases included information on prices, size, location (latitude
and longitude), and number of rooms and bathrooms. Many observations had miss-
ing or extreme values and therefore were omitted. Nevertheless, there still remained
a significant number of observations in each database (as seen in Appendix B, Table
3 and the descriptive statisticsc in Tables 5-9).

3.2 Estimation

The empirical application of apartments in Sao Paulo was aimed at understanding
if the data were generated by a hedonic regression or rather could they be created
by a decision tree. For this purpose, we ran five bifurcation regressions, each cor-
responding to a different continuous variable that acted as the bifurcation variable.
These variables included latitude, longitude, distance from Ana Rosa station, size
and condominium fees. The linear regressions contained the entire set of attributes,
which were the same for both the decision tree models and the hedonic regression.

4https://www.kaggle.com/datasets/argonalyst/sao-paulo-real-estate-sale-rent-april-2019
5https://www.kaggle.com/datasets/rmjacobsen/property-listings-for-5-south-american-countries
6We thank Properati Data for allowing free access to their databases through Kaggle.
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We divided the data into apartments for sale (4,297 observations) and apartments
for rent (5,458 observations). These databases were randomly split into training
data containing 80% of the observations (3,437 apartments for sale and 4,366 rental
apartments) and test data (the remaining 20% of the observations containing 867
apartments for sale and 1091 rental apartments). The parameters of the single
bifurcation model in Equation (1), which included the coefficients of the two linear
regressions in the branches of the tree, σ2 (which was assumed to be the same in
both branches), as well as the cutoff value of the bifurcation variable, were estimated
on the training data. These estimators were then used to predict the price/rent
of the apartments in the test data in order to determine how well the model fits
the data. The estimation of the coefficients in the leaves of the single bifurcation
model were computed using the least squares method for each specified cutoff value
of the bifurcation variable. Given these estimators, the cutoff value was chosen to
minimize the total sum of squared residuals (SSR) in the leaves of the tree (SSR =∑t

i=1(yi − ŷi)
2, where ŷi is the predicted value of apartment i conditional on the

cutoff value of the specified bifurcation variable). In addition, we ran a hedonic
regression with no bifurcation using the same set of independent variables as we did
for the estimations of the single bifurcation regressions. The estimators of the single
bifurcation models, as well as those of the no bifurcation model can be found in
Appendix B in Tables 10 and 11.

The performance of the hedonic regression was compared to that of the single
bifurcation regressions using various measures. The results are reported in Table 1,
which contains the mean squared error (MSE), the adjusted R2, and the values of the
Akaike (AIC) and Schwartz (BIC) criteria for the training database. We also report
the MSE and the adjusted R2 that were computed on the test database. As shown in
Table 1, distance from Ana Rosa is the best bifurcation variable according to all mea-
sures, both for apartments for rent and apartments for sale. It achieves the highest
adjusted R2 and the lowest MSE, AIC, and BIC criteria in the training database, as
well as the lowest MSE in the test data compared to any other bifurcation variable.
The opposite is true for latitude, which is the worst bifurcation variable according
to these same measures. However, according to all training and test measures, even
the worst single bifurcation variable performs better than the hedonic regression. It
reaches a higher adjusted R2 than the hedonic regression while maintaining a lower
MSE for both training and test data, as well as lower AC and BIC values.
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Table 1: Sao Paulo– Measures of goodness of fit of different models

Model
Cutoff
value

Train Test

MSE
Adj.
R2

# obs.
branch 1

% obs.
branch 1

AIC BIC MSE
Adj.
R2

# obs.
branch 1

% obs. in
branch 1

Sale

Ana Rosa dist 0.07 1.32E+10 0.85 1,062 30.9 89,897 90,056 1.46E+10 0.84 270 31.4
Size 70.01 1.51E+10 0.83 2,288 66.6 90,363 90,523 1.63E+10 0.83 542 63.0
Condo 797.24 1.48E+10 0.83 2,730 79.4 90,290 90,450 1.56E+10 0.83 662 77.0
Latitude -23.53 1.69E+10 0.81 2,331 67.8 90,743 90,903 1.84E+10 0.80 596 69.3
Longitude -46.64 1.53E+10 0.83 1,578 45.9 90,398 90,557 1.71E+10 0.82 421 49.0
No cutoff 1.81E+10 0.80 3,437 100.0 90,949 91,029 1.92E+10 0.80 860 100.0

Rent

Ana Rosa dist 0.05 7.64E+05 0.70 877 20.1 71,583 71,743 7.32E+05 0.71 212 19.4
Size 88.03 9.07E+05 0.65 3,183 72.9 72,333 72,493 8.73E+05 0.66 817 74.8
Condo 542.18 8.86E+05 0.66 1,750 40.1 72,230 72,396 8.66E+05 0.66 466 42.7
Latitude -23.55 9.39E+05 0.64 2,626 60.1 72,484 72,650 9.08E+05 0.65 633 58.0
Longitude -46.65 8.60E+05 0.67 2,215 50.7 72,103 72,269 8.22E+05 0.68 519 47.5
No cutoff 1.00E+06 0.61 4,366 100.0 72,744 72,827 9.75E+05 0.62 1,092 100.0

We performed the same analyses on the five additional databases. The results
for the training data of these five databases showed similar trends as the main anal-
ysis, with a single bifurcation model fitting the data better than a model with no
bifurcation (except for the BIC measure of Size which is slightly greater than the
BIC value of no bifurcation for rental apartments in Quito). However, the results for
test data were slightly more mixed, with the adjusted R2 of the no bifurcation model
being higher than that of some of the single bifurcation models for rental databases
in Lima, and Quito. The results are summarized in Appendix B (Tables 22-26).

We use the bootstrap procedure to test whether the results were statistically
significant.The null hypothesis, under which the model with no bifurcation is true,
is contrasted with an alternative hypothesis that supposes that a single bifurcation
model is correct. To test the hypotheses we examined the normalized log likelihood

ratio, which under Gaussianity equals LR = n0.5 log
(

SSR(H1)
SSR(H0)

)
. A high LR value

indicates that H0 is the correct model since the residuals of the null hypothesis are
notably smaller than those of the alternative. We used the residual bootstrapping
procedure to test the null hypothesis H0 against H1. We created 1,000 bootstrap
LR estimates by resampling the residuals that were calculated under the hypothesis
that H0 is true. The LR in each resample (LRb) is computed by re-estimating the
parameters of models H0 and H1 on the bootstrap sample.

We rejectH0 for a small bootstrap p-value, where the p-value equals the frequency
of resamples wherein LRb < LR. In Sao Paulo all five p-values, corresponding to five
alternative bifurcation models (Ana Rosa, Size, Condo, Latitude, and Longitude),
equal zero, showing that the model with no bifurcation is refuted when compared
to any of the single bifurcation models. These findings hold true for the five addi-
tional databases as well, where the no bifurcation model is uniformly rejected when
contrasted with to each of the single bifurcation models (Latitude, Longitude, and
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Size)7 These results are consistent with the conjecture that people use decision trees
to evaluate the price and rent of apartments.

4 Sales vs. Rents: Coordination on a Rule

Hedonic regression is a popular model for assessing not only sale but also rental
prices. How well does it predict values in the two different types of markets? We
conjecture that, other things being equal, hedonic regression would explain a larger
portion of the variance in the sales market as compared to the rental one. That is,
consider two regressions

yi = β0 +
m∑
j=1

βjx
j
i + εi i ≤ n (I) (2)

zk = β0 +
m∑
j=1

βjx
j
k + δk k ≤ r (II) (3)

with the same set of predictors x = (x1, ...xm), where y are prices of properties and
z are rents on different properties in the same locality and the same period. We
predict that the R2 of (I) would be higher than that of (II).

The logic behind this conjecture is the following: renting a property is, by and
large, a pure consumption decision: renters should ask themselves how much housing
rights are worth to them, and they do not need to bother about other agents’ valu-
ation of the rights they buy. By contrast, buyers of a property typically consider it
as an investment, and would therefore need to think how much others in the market
would be willing to pay for it.8 In other words, when a rational agent asks herself
what her reservation price for renting an apartment is, she faces a single-person de-
cision problem, and she can allow her idiosyncratic taste to affect her answer. But
when she asks the same question for buying an apartment, she realizes that she is a
player in a game that involves speculative trade. In this case the market coordinates
on a price for each asset, which becomes the equilibrium price. We suggest that,
when there is an aspect of speculative trade, simple rules would explain more of the

7We also checked the converse premise where the roles of the no bifurcation model and the single
bifurcation model were reversed. None of the single bifurcation models are refuted when supposing
that the alternative model is the no bifurcation model.

8Renters might be thinking of subletting the property they rented, in which case the difference
between renting and buying would be less pronounced.
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variance than when such trade is absent. Simple rules are easy to coordinate on, and
they can therefore serve as focal points (Schelling, 1960). In the absence of resale
opportunities, a rational agent need not worry about others’ valuations, and may
deviate from the general rule at no economic cost.9

Following this intuition, we analyzed the six databases mentioned above of asking
prices for both sales and rental prices that were obtained from the same localities at
the same time, and we found

Table 2: Adjusted R2– Sales vs. Rent

Sales Rent Ratio
Sao Paulo 0.80 0.61 1.30
Buenos Aires 0.62 0.46 1.34
Bogota 0.73 0.73 1.00
Lima 0.71 0.58 1.22
Quito 0.51 0.14 3.77
Montevideo 0.68 0.52 1.30

Thus, our conjecture seems to be supported by the data: in 5 out of 6 pairs
of databases the adjusted R2 for the sales regression is greater than in the rental
regression, and is equal for one pair of databases. Importantly, the set of variables
used for prediction is precisely the same in each pair of regressions.10,11 Clearly,
there could be many other reasons for the findings. For example, it is possible that
variables that are not reported in the databases are more influential in the rental
markets than in the corresponding sales markets. Yet, our conjecture about the way
economic agents reason about prices is in line with these data.

Next, consider affine trees as the basic model of the rules agents use. When
restricting attention to simple trees, as we do in this paper, the same intuition
suggests that the best-fit simple tree would obtain a better fit (a higher adjusted R2)
on a sales database than on a comparable rentals database: a single-bifurcation tree
is a simple enough formula that can be thought of as the rule that the sales markets
coordinate on. Hence, it can serve as a focal point. By contrast, in the rental market,
where there is no resale value and no need to coordinate on prices, such a simple rule
is likely to provide a lower fit.

9This intuition was also the basis of a previous paper by Gayer, Gilboa, and Lieberman (2007).
See the Discussion section for a detailed comparison of the two.

10Note that there were some cities with a considerable difference between the number of apart-
ments for rent and for sale

11The conclusions regarding the adjusted R2 on the test databases are the same.
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The adjusted R2 of each bifurcation model for both sales and rental apartments
for our six databases appear in Appendix B in Table 27. As can be seen from the
table, apart from Bogota, each single-bifurcation tree obtains a better fit on the sales
databases than it does on the rental ones, moreover for more than 50% of that pairs
the ratio of the sales to rent of the of adjusted R2s is greater than 20%.

5 Discussion

In Gayer, Gilboa, and Lieberman (2007) we compared rule-based and case-based
reasoning in both sales and rental markets. The former was modeled by hedonic
regressions, and the latter – by the optimal empirical similarity (see also Gilboa,
Lieberman, and Schmeidler, 2006). We predicted that rule-based reasoning would
perform better, as compared to case-based reasoning, in the sales than in the rentals
market. The reasoning behind this prediction is the same as described in Section
4 above. The main differences between the two are: (i) in this paper we focus on
rule-based reasoning, and remain silent on alternative ways of reasoning agents might
employ; and (ii) here we consider a different class of rules, namely, we augment the
rule-based model to include affine trees and not only hedonic regression.

In both of these, the comparison of sales and rental data assumes that in the
former there is a tendency to coordinate on rules, and that the need for coordination
drives people to pick simple rules. Following this logic, we conjecture that, should
we consider deeper affine trees (with additional bifurcations) the difference between
sales and rental markets would diminish with the complexity of the tree. Due to the
computational costs, we leave this conjecture for future research.

6 Appendix A: Proofs

6.1 Proof of Theorem 1

We prove NP-Completeness of the three problems using the same reduction, from
SET COVER:

Problem 3 SET COVER: Given a natural number r, a set of u subsets of S ≡
{1, ..., r}, S = {S1, ..., Su}, and a natural number t ≤ u, are there t subsets in S
whose union contains S? (That is, are there indices 1 ≤ j1 < ... < jt ≤ u such that⋃

l≤t Sjl = S ?)
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Given an instance of SET COVER construct a database as follows.
For simplicity, assume, without loss of generality, that S1, ..., Su are all nonempty

and distinct. Let m = u and q = 0. To each subset Sj (j ≤ u) define a binary
variable xj. For an element of S, l ≤ r, let Sl be the set of sets containing l,

Sl = {Sk ∈ S | l ∈ Sk }

Define a database with n observations, B = ((xi, yi))i≤n , for n = 1+
∑

l≤r (|Sl|+ 1)
as follows. For l ≤ r, let there be one observation i with

xj
i = 1l∈Sj

yi = 1

and additional |Sl| observations defined as follows: for each k ≤ r, if Sk ∈ Sl (that
is, l ∈ Sk) there is an additional observation i with

xj
i = 1l∈Sj

+ 1k=j yi = 1

finally, there is one observation i with

xj
i = 0 ∀j yi = 0.

For example, if r = 3 and S = {{1, 2} , {2, 3}} we obtain the following database,
with 8 observations of 2 variables x and y:

x{1,2} x{2,3} y
(1 ∈ {1, 2, 3}) 1 0 1

2 0 1
(2 ∈ {1, 2, 3}) 1 1 1

2 1 1
1 2 1

(3 ∈ {1, 2, 3}) 0 1 1
0 2 1

* 0 0 0

Clearly, the construction of the database can be done in linear time. We claim
that the set S has a cover of size t iff there is an affine tree that perfectly fits the
data, and whose size is, roughly, t according to each of the measures. More precisely,
we claim that the following are equivalent:

(I) There is a cover of S consisting of no more than t (≤ u) subsets from S =
{S1, ..., Su} ;

(II) There is an affine tree (V,E, r, L, b, p, d) such that SSE (B, (V,E, r, L, b, c, p, d)) =
0 and |image (b)| ≤ t ;
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(III) There is an affine tree (V,E, r, L, b, p, d) such that SSE (B, (V,E, r, L, b, c, p, d)) =
0 and |V \L| ≤ t ;

(IV) There is an affine tree (V,E, r, L, b, p, d) such that SSE (B, (V,E, r, L, b, c, p, d)) =
0 and Depth ≤ t+ 1 .

To see that, assume first that (I) holds. Assume that 1 ≤ j1 ≤ ... ≤ jt ≤ u are the
indices of the sets that cover S. Construct a tree that has t decision nodes, ordered
sequentially as follows. The root branches on xj1 at the cutoff level 0. If xj1 > 0 the
tree ends at a leaf whose d value is the constant affine function 1 (that is, β0 = 1
and βj = 0 for 1 ≤ j ≤ m). If xj1 ≤ 0, the tree leads to a node that branches on
xj2 at 0. If xj2 > 0, the tree ends at a leaf whose d value is 1 again. If xj2 ≤ 0,
the tree continues to examine xj3 and so forth. Only if all the t variables are non-
positive does the tree end up with the value d = 0 (that is, βj = 0 for 0 ≤ j ≤ m).
Clearly, this tree satisfies |Im (b)| = |V \L| = t and Depth = t + 1. We claim that
it also has SSE (B, (V,E, r, L, b, c, p, d)) = 0. Consider first an observation i in the
database B that corresponds to an element k of S (that is, 1 ≤ k ≤ r). Recall
that there are |Sk| + 1 such observations in B, one consisting of 1’s and 0’s, and
describing the incidence matrix of k ∈ S, and an additional |Sk| observations in each
of which exactly one of the 1’s is replaced by 2. However, all these observations have
exactly the same set of variables that are equal to 0 (corresponding to sets that do
not contain k) and they have positive values (1 or 2) in the other variables. Because
1 ≤ j1 ≤ ... ≤ jt ≤ u define a cover of S, there is at least one jl such that xjl

i = 1
and this means that, for such xi, the tree would branch into a leaf with yi = 1. The
final observation, however, consists of all 0 values and would result in yi = 0. Thus,
(I) implies (II), (III), and (IV).

We now turn to show that each of (II), (III), and (IV) implies (I). Let us
first consider (II). Assume that there is an affine tree (V,E, r, L, b, p, d) such that
SSE (B, (V,E, r, L, b, c, p, d)) = 0 and |Im (b)| ≤ t. Thus, the tree uses up to t
variables and obtains a perfect fit of the database B. We claim that the subsets Sjl

corresponding to these variables have to constitute a cover of S. To see this, assume
that 1 ≤ j1 < ... < jt′ ≤ m are the t′ variables used in the tree (with t′ ≤ t). Assume,
by way of negation, that

⋃
l≤t′ Sjl ⊊ S and let k ∈ S be such that k /∈ Sjl for each

l ≤ t′. Consider now the |Sk|+ 1 observations in B that are defined by k. For each
of these observations i, and each variable jl, x

jl
i = 0 and thus the computation of the

tree for each of these ends up in the same leaf. Furthermore, xjl
i = 0 obviously holds

also for the last observation, so that it, too, ends up in the same leaf. It follows that
for some coefficients βj, 0 ≤ j ≤ m, all these |Sk|+2 observations have computations

13



that result in

yi = β0 +
m∑
j=1

βjx
j
i

Next, we argue that, for each of these |Sk| + 2 observations, βjx
j
i = 0 for every

j > 0. For the last one, xj
i = 0 for every j > 0 by construction. For each of the

other |Sk| + 1 observations, either we have xj
i = 0 (in case k /∈ Sj), in which case

βjx
j
i = 0 obviously follows, or else we have two observations that are identical in the

values of all variables apart from one of them, j, with one observation having xj
i = 1

and the other xj
i = 2. As both result in the same value yi = 1, it follows that βj = 0

and βjx
j
i = 0. Thus, all the |Sk| + 2 observations have computations that result in

yi = β0. However, for the first |Sk| + 1 we have yi = 1, while for the last – yi = 0,
a contradiction. Hence, such a tree that obtains a perfect fit has to define a cover of
S.

Next, assume that (III) holds. Observing that, for any tree, |V \L| ≤ |Im (b)|
implies that (II) holds, and therefore also (I). □
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7 Appendix B : Tables

Table 3: Number of observations in the different databases

Sao Paulo Buenos Aires Bogota Lima Quito Montevideo
Apartments for rent and for sale in city 13,640 58,439 150,052 54,980 28,529 20,635
Obs. with missing values 2,683 44,508 94,905 40,903 10,722 10,801
Obs. will non- missing values 10,957 13,931 55,147 14,077 17,807 9,834
% of obs. with non-missing values 80% 24% 37% 26% 62% 48%
Duplicates 319 141 1,655 235 233 2
Outliers 883 726 3,729 1,180 1,376 673
Obs. in clean data 9,755 13,064 49,763 12,662 16,198 9,159
% of clean obs. in original database 72% 22% 33% 23% 57% 44%
Sales 4,297 10,199 36,778 10,878 10,352 6,048
Rent 5,458 2,865 12,985 1,784 5,846 3,111
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Table 4: Sao Paulo– Descriptive statistics

Mean STD Median Min Max
Price (BRL) 482,018 301,352 380,000 45,000 1,500,000
Condo (BRL) 577 367 490 1 2800
Size (m2) 70.29 29.66 62 30 200
Rooms 2.26 0.66 2 1 5
Toilets 1.96 0.75 2 1 6
Suites 0.86 0.61 1 0 4

Sales Parking 1.23 0.56 1 0 4
Elevator 0.42 0.49 0 0 1
Swimming Pool 0.55 0.50 1 0 1
New 0.02 0.13 0 0 1
Latitude -23.56 0.06 -23.55 -23.77 -23.40
Longitude -46.61 0.09 -46.63 -46.81 -46.37
Ana Rosa 0.11 0.07 0.09 0.01 0.33
Price (BRL) 2,451 1,613 1,900 480 10,000
Condo (BRL) 742 466 600 1 3000
Size (m2) 77.74 36.68 65 30 200
Rooms 2.24 0.76 2 1 5
Toilets 2.00 0.82 2 1 7
Suites 0.92 0.70 1 0 4

Rent Parking 1.34 0.68 1 0 5
Elevator 0.32 0.47 0 0 1
Swimming Pool 0.50 0.50 0 0 1
New 0.00 0.02 0 0 1
Latitude -23.56 0.05 -23.56 -23.74 -23.39
Longitude -46.64 0.07 -46.65 -46.94 -46.38
Ana Rosa 0.09 0.05 0.08 0.01 0.33
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Table 5: Buenos Aires– Descriptive statistics

Mean STD Median Min Max
Latitude -37.88 0.32 -38.00 -38.35 -36.67
Longitude -57.46 0.24 -57.55 -58.01 -56.67
Size (m2) 82.99 72.00 59.00 16.00 1,050.00

Sales Rooms 2.65 1.17 3 1 6
Bathrooms 1.57 0.75 1 1 4
House 0.26 0.44 0 0 1
Price (USD) 131,831 94,709 98,000 5,000 680,000
Latitude -37.89 0.30 -38.00 -38.35 -37.02
Longitude -57.46 0.23 -57.55 -58.00 -56.80
Size (m2) 72.35 53.64 56 17 570

Rent Rooms 2.59 1.08 3 1 6
Bathrooms 1.45 0.65 1 1 3
House 0.21 0.41 0 0 1
Price (URS) 19,518 20,467 13,000 2,200 185,000

Table 6: Bogota– Descriptive statistics

Mean STD Median Min Max
Latitude 4.70 0.04 4.70 4.54 4.82
Longitude -74.06 0.03 -74.05 -74.17 -74.01
Size (m2) 136.74 88.12 109.00 10.00 800.00

Sales Rooms 2.87 0.96 3 1 7
Bathrooms 2.82 1.10 3 1 6
House 0.18 0.39 0 0 1
Price (COP) 738,628,475 562,765,653 550,000,000 20,060,000 3,182,998,000
Latitude 4.69 0.04 4.69 4.57 4.81
Longitude -74.06 0.02 -74.05 -74.14 -74.01
Size (m2) 122.55 83.87 91 11 520

Rent Rooms 2.48 0.95 3 1 6
Bathrooms 2.56 1.09 2 1 6
House 0.09 0.29 0 0 1
Price (COP) 3,627,813 2,955,958 2,600,000 295,000 16,500,000
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Table 7: Lima– Descriptive statistics

Mean STD Median Min Max
Latitude -12.09 0.05 -12.10 -12.30 -11.89
Longitude -77.01 0.05 -77.01 -77.12 -76.85
Size (m2) 177.72 143.54 132.00 10.00 1,104.00

Sales Rooms 3.20 1.13 3 1 8
Bathrooms 2.72 1.15 3 1 6
House 0.23 0.42 0 0 1
Price (USD) 305,269 263,630 224,100 13,500 1,950,000
Latitude -12.11 0.02 -12.11 -12.20 -12.00
Longitude -77.02 0.03 -77.03 -77.11 -76.89
Size (m2) 160.79 127.05 120 16 1,008

Rent Rooms 2.68 1.07 3 1 7
Bathrooms 2.57 1.05 2 1 5
House 0.13 0.33 0 0 1
Price (USD) 1,407 926 1,100 380 10,000

Table 8: Quito– Descriptive statistics

Mean STD Median Min Max
Latitude -0.18 0.06 -0.18 -0.37 0.01
Longitude -78.47 0.03 -78.48 -78.58 -78.37
Size (m2) 188.21 200.84 130.00 10.00 2,730.00

Sales Rooms 2.88 1.05 3 1 7
Bathrooms 2.63 1.05 3 1 6
House 0.44 0.50 0 0 1
Price (USD) 162,800 106,497 130,000 5,500 685,000
Latitude -0.18 0.03 -0.18 -0.29 -0.06
Longitude -78.48 0.02 -78.48 -78.54 -78.41
Size (m2) 120.25 80.64 94 11 623

Rent Rooms 2.19 0.99 2 1 5
Bathrooms 2.20 0.95 2 1 5
House 0.09 0.29 0 0 1
Price (USD) 739 797 600 50 22,000
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Table 9: Montevideo– Descriptive statistics

Mean STD Median Min Max
Latitude -34.89 0.02 -34.90 -34.93 -34.75
Longitude -56.15 0.04 -56.15 -56.28 -56.02
Size (m2) 147.85 220.92 80.00 10.00 4,774.00

Sales Rooms 2.27 0.95 2 1 5
Bathrooms 1.65 0.82 1 1 4
House 0.25 0.43 0 0 1
Price (USD) 234,833 153,933 178,000 10,000 887,314
Latitude -34.89 0.02 -34.90 -34.93 -34.76
Longitude -56.16 0.03 -56.16 -56.26 -56.05
Size (m2) 72.55 118.75 55 10 3,000

Rent Rooms 1.72 0.73 2 1 4
Bathrooms 1.18 0.38 1 1 2
House 0.13 0.33 0 0 1
Price (UYU) 21,718 6,723 21,000 1,800 48,000
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Table 12: Estimation of price of apartments for sale in Buenos Aires

Bifurcation
variable

No cutoff Latitude Longitude Size

C UC
10,632,053.640*
(608,483.084)

2,087,523.663
(1,201,370.401)

6,810,906.605*
(1,223,997.062)

8,585,941.756*
(676,587.898)

Constant OC
15,857,387.643*
(715,617.622)

10,761,080.288*
(856,680.665)

15,506,340.248*
(1,078,874.046)

Latitude UC
-262,780.526*
(15,622.441)

-14,245.219
(108,999.585)

-94,890.596*
(30,759.390)

-209,978.948*
(17,093.718)

Latitude OC
-410,306.673*
(18,511.330)

-276,319.178*
(21,402.369)

-366,421.554*
(29,114.824)

Longitude UC
358,634.460*
(20,721.258)

46,118.185
(81,017.161)

180,974.768*
(35,323.903)

288,057.090*
(22,868.164)

Longitude OC
546,810.886*
(24,510.674)

369,871.748*
(28,887.559)

510,236.967*
(37,635.298)

Size UC
505.153*
(15.173)

296.222*
(27.609)

326.493*
(23.592)

2,077.325*
(54.508)

Size OC
585.199*
(17.598)

646.041*
(19.252)

315.829*
(16.935)

Rooms UC
15,761.943*
(945.865)

13,552.604*
(2,814.302)

10,318.930*
(2,025.461)

-11,076.030*
(1,326.786)

Rooms OC
15,919.044*
(991.895)

15,205.378*
(1,069.115)

14,451.061*
(1,868.814)

Bathrooms UC
50,177.239*
(1,293.999)

47,129.729*
(3,687.471)

42,579.175*
(2,633.139)

25,011.923*
(1,660.032)

Bathrooms OC
46,170.865*
(1,362.985)

48,586.921*
(1,467.120)

51,997.105*
(2,056.948)

House UC
-36,933.660*
(2,123.235)

-6,646.633
(5,557.124)

-10,330.537*
(3,929.997)

-60,067.117*
(2,528.664)

House OC
-31,269.482*
(2,414.872)

-42,115.646*
(2,642.206)

-87,728.237*
(4,784.423)

The table presents the OLS coefficients conditional on the cutoff value estimates.
Standard errors appear in parentheses. UC stands for under cutoff and OC stands for over cutoff.

∗ absolute t-values of 2 or above (conditional on the cutoff parameter estimates).
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Table 13: Estimation of prices of apartments for rent in Buenos Aires

Bifurcation
variable

No cutoff Latitude Longitude Size

C UC
2,914,395.173*
(352,078.693)

1,820,473.769*
(324,851.400)

2,020,412.510*
(323,689.951)

2,508,454.527*
(371,462.140)

Constant OC
58,438,997.544*
(4,708,174.731)

80,677,314.458*
(8,631,405.603)

4,332,267.692*
(785,077.431)

Latitude UC
-19,979.392*
(9,592.364)

-21,710.563*
(8,764.203)

-19,032.678*
(8,682.626)

-22,568.955*
(10,141.661)

Latitude OC
369,151.809*
(126,066.979)

643,337.251*
(162,784.708)

-2,617.679
(21,073.732)

Longitude UC
63,902.109*
(12,373.112)

45,982.018*
(11,202.844)

47,692.716*
(11,225.069)

58,523.900*
(13,067.908)

Longitude OC
786,659.721*
(114,688.371)

998,904.121*
(208,316.301)

76,932.037*
(27,394.359)

Size UC
59.014*
(10.303)

40.006*
(9.880)

42.550*
(9.817)

162.347*
(25.703)

Size OC
158.193*
(27.931)

142.786*
(30.762)

-2.944
(14.561)

Rooms UC
2,520.420*
(486.367)

2,372.444*
(452.677)

2,170.156*
(450.683)

711.322
(638.344)

Rooms OC
3,119.767
(1,733.164)

5,805.863*
(2,015.842)

3,753.696*
(1,271.436)

Bathrooms UC
6,740.213*
(719.426)

5,795.766*
(688.163)

6,177.485*
(679.004)

4,605.018*
(803.138)

Bathrooms OC
8,917.640*
(2,088.783)

7,861.316*
(2,546.846)

5,965.430*
(1,722.547)

House UC
-2,062.408
(1,047.485)

-2,986.622*
(997.503)

-2,538.959*
(981.117)

-5,479.077*
(1,117.421)

House OC
-2,675.361
(3,188.534)

-16,142.786*
(4,015.485)

-5,627.805
(3,405.091)

The table presents the OLS coefficients conditional on the cutoff value estimates.
Standard errors appear in parentheses. UC stands for under cutoff and OC stands for over cutoff.

∗ absolute t-values of 2 or above (conditional on the cutoff parameter estimates).
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Table 14: Estimation of prices of apartments for sale in Bogota

Bifurcation
variable

No cutoff Latitude Longitude Size

Constant UC
176,467,169,785.068*
(5,432,406,625.229)

211,686,057,720.620*
(8,316,494,775.337)

83,534,095,746.501*
(8,398,969,347.172)

115,951,076,672.627*
(5,609,813,228.176)

Constant OC
133,427,119,753.486*
(7,060,034,012.401)

135,129,212,353.537*
(15,992,494,622.315)

476,880,671,849.863*
(14,158,849,502.427)

Latitude UC
-1,701,328,127.610*
(46,834,775.775)

2,305,992,819.511*
(121,922,493.723)

-83,805,478.249
(54,120,332.757)

-1,513,779,128.611*
(49,979,916.628)

Latitude OC
-1,986,644,276.297*
(85,193,479.625)

-4,135,303,764.677*
(78,625,752.581)

-1,005,568,898.556*
(104,294,113.948)

Longitude UC
2,274,370,800.416*
(72,054,847.548)

3,001,530,792.729*
(110,645,651.000)

1,121,206,662.846*
(112,263,259.757)

1,469,424,079.993*
(74,190,116.622)

Longitude OC
1,675,067,374.697*
(95,397,917.960)

1,562,166,147.438*
(214,190,933.297)

6,364,360,335.871*
(188,814,911.256)

Size UC
4,885,874.400*
(30,645.842)

4,643,787.982*
(54,111.347)

3,522,420.839*
(45,129.620)

6,013,552.168*
(61,963.055)

Size OC
4,653,948.463*
(34,956.325)

5,533,819.358*
(37,441.226)

3,393,408.524*
(53,149.992)

Rooms UC
-89,653,393.388*
(2,436,473.899)

-63,283,584.418*
(4,146,809.697)

-81,669,142.361*
(3,394,196.723)

-84,382,325.507*
(2,668,198.043)

Rooms OC
-68,020,168.827*
(2,886,899.607)

-74,592,332.996*
(3,154,389.976)

-147,322,843.424*
(4,824,203.437)

Bathrooms UC
117,271,183.629*
(2,404,199.268)

143,921,099.494*
(4,296,054.065)

124,368,666.538*
(3,575,244.053)

66,296,595.206*
(2,889,222.280)

Bathrooms OC
93,987,891.310*
(2,724,931.914)

91,189,012.508*
(2,900,315.392)

119,003,781.893*
(4,475,328.350)

House UC
-213,200,611.673*
(5,328,367.654)

-365,763,028.287*
(10,165,923.610)

-122,627,016.814*
(7,351,756.661)

-133,673,284.774*
(5,775,797.707)

House OC
-116,899,573.158*
(5,934,458.640)

-134,145,395.774*
(7,139,379.279)

-370,164,215.873*
(10,327,313.523)

The table presents the OLS coefficients conditional on the cutoff value estimates.
Standard errors appear in parentheses. UC stands for under cutoff and OC stands for over cutoff.

∗ absolute t-values of 2 or above (conditional on the cutoff parameter estimates).
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Table 15: Estimation of prices of apartments for rent in Bogota

Bifurcation
variable

No cutoff Latitude Longitude Size

Constant UC
1,202,596,285.984*
(56,763,808.810)

1,612,433,873.190*
(84,380,083.129)

621,594,784.328*
(84,114,799.961)

702,032,488.756*
(62,633,109.272)

Constant OC
375,739,217.587*
(72,354,664.585)

1,033,946,053.864*
(173,897,985.649)

3,050,285,357.233*
(127,458,933.064)

Latitude UC
-11,937,814.911*
(455,493.618)

-1,186,313.889
(924,155.339)

-4,353,368.885*
(519,904.948)

-7,516,710.338*
(494,414.690)

Latitude OC
-12,941,046.945*
(1,091,148.185)

-25,280,333.568*
(841,049.255)

-27,062,223.242*
(1,052,178.370)

Longitude UC
15,482,406.746*
(755,624.284)

21,696,969.012*
(1,111,794.700)

8,117,055.962*
(1,129,977.938)

8,998,943.996*
(831,430.434)

Longitude OC
4,247,387.580*
(981,117.880)

12,356,636.813*
(2,321,823.764)

39,461,343.736*
(1,707,279.849)

Size UC
27,758.471*
(307.893)

29,409.755*
(395.845)

17,933.057*
(485.906)

29,383.908*
(763.501)

Size OC
22,505.564*
(438.386)

30,930.076*
(372.067)

23,379.128*
(471.828)

Rooms UC
-369,466.913*
(23,067.059)

-326,691.237*
(30,811.871)

-283,553.240*
(32,749.276)

-465,976.258*
(27,078.532)

Rooms OC
-306,935.395*
(31,822.656)

-372,587.883*
(29,917.063)

-491,408.578*
(46,291.739)

Bathrooms UC
490,875.763*
(22,338.575)

571,473.590*
(28,919.505)

664,780.015*
(35,014.685)

327,770.413*
(29,696.583)

Bathrooms OC
395,179.010*
(31,234.872)

321,693.534*
(26,392.931)

683,864.763*
(37,199.360)

House UC
-1,569,389.900*
(58,724.518)

-2,041,131.986*
(87,245.565)

-703,966.909*
(82,092.169)

-427,958.837*
(81,300.709)

House OC
-779,793.307*
(72,836.442)

-1,242,214.723*
(79,648.353)

-1,749,976.842*
(85,353.927)

The table presents the OLS coefficients conditional on the cutoff value estimates.
Standard errors appear in parentheses. UC stands for under cutoff and OC stands for over cutoff.

∗ absolute t-values of 2 or above (conditional on the cutoff parameter estimates).
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Table 16: Estimation of prices of apartments for sale in Lima

Bifurcation
variable

No cutoff Latitude Longitude Size

C UC
-50,132,438.731*
(3,031,465.535)

-135,108,679.822*
(5,836,975.427)

41,802,623.502*
(7,529,155.569)

-30,484,820.800*
(2,978,593.966)

C OC
-4,014,646.876
(3,159,916.407)

-84,434,061.748*
(5,406,408.422)

-203,131,530.948*
(8,671,113.291)

Latitude UC
-613,784.335*
(33,127.752)

1,117,276.970*
(78,143.435)

-811,768.907*
(45,752.468)

-453,533.743*
(31,841.207)

Latitude OC
-880,062.394*
(47,208.070)

348,048.077*
(48,762.352)

-417,491.489*
(151,723.225)

Longitude UC
-554,336.976*
(37,227.045)

-1,930,477.165*
(70,967.929)

670,023.558*
(94,537.316)

-324,326.104*
(36,499.263)

Longitude OC
85,691.602*
(39,400.566)

-1,151,573.181*
(71,243.651)

-2,577,471.896*
(112,334.896)

Size UC
1,363.636*
(13.899)

1,595.409*
(20.597)

1,923.182*
(26.910)

1,788.412*
(26.943)

Size OC
1,082.947*
(16.140)

1,188.658*
(14.918)

886.478*
(25.554)

Rooms UC
-20,970.376*
(1,839.315)

-8,230.011*
(2,516.755)

-29,516.740*
(2,489.658)

-23,810.792*
(1,849.491)

Rooms OC
-17,743.122*
(2,224.011)

-18,301.685*
(2,415.916)

-63,654.591*
(4,707.890)

Bathrooms UC
53,413.287*
(1,804.109)

30,029.308*
(2,320.979)

40,296.427*
(2,586.052)

34,975.050*
(1,887.607)

Bathrooms OC
44,143.027*
(2,389.315)

48,607.223*
(2,194.271)

74,742.896*
(4,562.191)

House UC
12,572.661*
(4,639.017)

42,557.053*
(6,193.212)

13,889.577*
(6,645.812)

35.435
(4,644.282)

House OC
57,147.204*
(5,922.602)

48,235.232*
(5,687.060)

30,560.564*
(11,860.530)

The table presents the OLS coefficients conditional on the cutoff value estimates.
Standard errors appear in parentheses. UC stands for under cutoff and OC stands for over cutoff.

∗ absolute t-values of 2 or above (conditional on the cutoff parameter estimates).
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Table 17: Estimation of prices of apartments for rent in Lima

Bifurcation
variable

No cutoff Latitude Longitude Size

C UC
-311,383.081*
(40,018.427)

2,294,352.858*
(660,801.250)

-247,551.861*
(48,544.689)

-247,454.338*
(39,026.507)

C OC
-320,709.204*
(37,872.347)

-324,708.747
(365,720.328)

-1,302,131.999*
(171,053.774)

Latitude UC
-2,076.375*
(793.370)

-22,118.455*
(9,631.145)

-2,196.210*
(800.868)

-1,859.938*
(757.907)

Latitude OC
-1,714.899*
(799.050)

13,787.480*
(4,169.852)

26,638.006*
(8,196.645)

Longitude UC
-3,720.159*
(502.072)

33,347.372*
(9,022.869)

-2,872.293*
(590.172)

-2,923.807*
(487.665)

Longitude OC
-3,898.667*
(474.901)

-6,392.060
(4,856.589)

-21,195.789*
(2,701.906)

Size UC
4.989*
(0.193)

-0.755
(2.534)

6.523*
(0.216)

5.717*
(0.251)

Size OC
4.935*
(0.184)

1.537*
(0.387)

2.305*
(0.719)

Rooms UC
86.843*
(22.847)

2,455.657*
(226.547)

21.615
(22.174)

56.059*
(22.241)

Rooms OC
60.366*
(21.742)

493.090*
(108.381)

244.731
(206.285)

Bathrooms UC
28.581
(21.826)

-160.378
(299.642)

18.549
(21.383)

31.360
(21.254)

Bathrooms OC
37.185
(20.675)

-356.864*
(75.088)

-895.415*
(134.643)

House UC
238.186*
(64.221)

-5,697.635*
(598.010)

214.566*
(63.071)

192.046*
(61.393)

House OC
303.020*
(61.127)

966.892*
(230.574)

-1,999.708*
(669.254)

The table presents the OLS coefficients conditional on the cutoff value estimates.
Standard errors appear in parentheses. UC stands for under cutoff and OC stands for over cutoff.

∗ absolute t-values of 2 or above (conditional on the cutoff parameter estimates).
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Table 18: Estimation of prices of apartments for sale in Quito

Bifurcation
variable

No cutoff Latitude Longitude Size

Constant UC
35,819,601.882*
(2,128,335.717)

686,061.103
(451,151.617)

17,906.228
(65,738.324)

112,957.568
(58,618.368)

Constant OC
99,823.855
(58,199.583)

-2,727,469.782*
(781,032.805)

-213,495.414
(332,251.106)

Latitude UC
-138,920.021*
(13,276.403)

77,167.895*
(21,981.384)

-1,828.734*
(367.481)

-1,581.907*
(365.835)

Latitude OC
-1,476.466*
(378.997)

15,102.325*
(2,578.033)

-3,814.143
(3,212.065)

Longitude UC
456,414.344*
(27,126.422)

8,445.868
(5,731.069)

228.982
(837.561)

1,439.415
(746.821)

Longitude OC
1,272.080
(741.474)

-34,811.134*
(9,958.882)

-2,732.009
(4,231.010)

Size UC
237.773*
(4.847)

-2.224
(2.775)

3.772*
(0.222)

3.137*
(0.292)

Size OC
3.696*
(0.220)

2.979*
(1.309)

1.692
(1.275)

Rooms UC
-4,530.625*
(1,091.115)

733.619*
(190.857)

-37.216*
(17.337)

-29.385
(18.176)

Rooms OC
-40.392*
(17.305)

175.009
(131.253)

103.107
(101.333)

Bathrooms UC
44,728.464*
(1,053.674)

-454.166*
(178.106)

55.602*
(18.284)

74.160*
(18.744)

Bathrooms OC
67.493*
(18.175)

235.717*
(116.853)

-30.170
(109.506)

House UC
-32,609.030*
(1,957.641)

-1,850.650*
(358.761)

-187.906*
(46.216)

-142.369*
(46.536)

House OC
-169.305*
(45.764)

-990.169*
(225.229)

-770.668*
(190.162)

The table presents the OLS coefficients conditional on the cutoff value estimates.
Standard errors appear in parentheses. UC stands for under cutoff and OC stands for over cutoff.

∗ absolute t-values of 2 or above (conditional on the cutoff parameter estimates).
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Table 19: Estimation of prices of apartments for rent in Quito

Bifurcation
variable

No cutoff Latitude Longitude Size

C UC
89,673.721
(57,835.697)

39,608,816.784*
(2,267,175.732)

31,226,829.374*
(3,469,753.924)

29,021,602.592*
(1,924,618.258)

Constant OC
-38,927,515.633*
(4,755,463.111)

-68,765,987.516*
(7,510,045.565)

74,790,265.289*
(5,427,639.229)

Latitude UC
-1,601.387*
(364.800)

449,734.776*
(24,466.298)

-63,564.532*
(14,617.640)

-111,733.115*
(11,950.114)

Latitude OC
-39,365.596
(42,707.452)

-713,997.285*
(35,800.132)

91,025.488*
(35,908.210)

Longitude UC
1,143.042
(736.847)

503,224.921*
(28,903.045)

397,667.975*
(44,220.781)

369,542.600*
(24,529.672)

Longitude OC
-496,161.830*
(60,619.922)

-875,338.812*
(95,745.853)

950,101.543*
(69,175.221)

Size UC
3.688*
(.220)

208.459*
(5.035)

227.105*
(5.798)

771.976*
(13.261)

Size OC
274.684*
(10.722)

249.472*
(8.105)

11.826
(6.506)

Rooms UC
-33.630
(17.286)

948.392
(1,214.373)

-3,582.735*
(1,134.106)

-17,857.306*
(1,044.575)

Rooms OC
-3,387.094
(1,944.301)

7,686.205*
(3,126.797)

-11,343.357*
(2,453.656)

Bathrooms UC
63.163*
(18.177)

43,257.784*
(1,181.948)

42,725.731*
(1,134.236)

23,912.655*
(1,050.700)

Bathrooms OC
29,531.401*
(1,872.542)

40,806.701*
(2,551.005)

43,014.356*
(2,381.129)

House UC
-193.255*
(45.126)

-8,830.497*
(2,492.727)

-36,735.669*
(2,102.551)

-44,887.241*
(1,730.191)

House OC
1,198.790
(3,447.543)

1,579.017
(4,815.502)

3,640.706
(7,969.153)

The table presents the OLS coefficients conditional on the cutoff value estimates.
Standard errors appear in parentheses. UC stands for under cutoff and OC stands for over cutoff.

∗ absolute t-values of 2 or above (conditional on the cutoff parameter estimates).
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Table 20: Estimation of prices of apartments for sale in Montevideo

Bifurcation
variable

No cutoff Latitude Longitude Size

C UC
14,419,091.225*
(3,014,642.053)

-358,575,560.901*
(76,116,470.068)

-6,604,658.753
(10,795,166.768)

5,217,609.222
(3,501,468.105)

Constant OC
30,243,001.425*
(3,079,562.314)

-9,476,749.015*
(3,428,669.871)

28,006,237.871*
(5,186,094.445)

Latitude UC
-1,253,049.216*
(69,186.594)

-7,263,822.378*
(1,847,320.838)

-657,609.730*
(108,231.323)

-1,108,188.932*
(79,777.825)

Latitude OC
-922,379.672*
(70,732.124)

-2,768,357.215*
(111,728.990)

-1,351,334.669*
(118,811.661)

Longitude UC
1,035,463.694*
(33,856.036)

-1,868,407.196
(944,566.401)

290,059.799
(151,367.910)

781,156.683*
(42,252.870)

Longitude OC
1,111,598.140*
(33,133.677)

1,552,132.765*
(53,659.646)

1,337,626.074*
(50,470.712)

Size UC
84.859*
(6.570)

376.275*
(53.089)

75.909*
(15.203)

358.463*
(49.544)

Size OC
79.507*
(6.402)

72.285*
(6.829)

16.756*
(7.422)

Rooms UC
29,923.209*
(1,884.706)

57,887.973*
(7,578.033)

17,770.347*
(2,988.333)

15,101.474*
(2,236.332)

Rooms OC
26,922.231*
(1,890.560)

41,166.479*
(2,213.738)

46,921.153*
(3,549.532)

Bathrooms UC
91,238.722*
(2,170.792)

79,020.596*
(7,382.713)

44,382.654*
(4,591.840)

76,634.797*
(2,824.896)

Bathrooms OC
85,693.027*
(2,230.645)

87,300.578*
(2,390.964)

79,563.533*
(3,312.466)

House UC
-8,195.520*
(3,662.220)

-17,420.512
(19,588.651)

10,180.420
(6,305.297)

-14,704.121*
(4,522.289)

House OC
-5,358.477
(3,617.041)

-13,444.354*
(4,124.668)

-54,966.811*
(6,149.700)

The table presents the OLS coefficients conditional on the cutoff value estimates.
Standard errors appear in parentheses. UC stands for under cutoff and OC stands for over cutoff.

∗ absolute t-values of 2 or above (conditional on the cutoff parameter estimates).
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Table 21: Estimation of prices of apartments for rent in Montevideo

Bifurcation
variable

No cutoff Latitude Longitude Size

C UC
-2,326,315.249*
(251,649.510)

-2,979,684.793*
(316,420.109)

53,625.515
(704,313.596)

-1,934,795.445*
(256,160.916)

Constant OC
-5,133,659.344*
(658,138.000)

-3,677,110.443*
(330,372.746)

-6,429,612.218*
(901,958.563)

Latitude UC
-108,133.099*
(4,334.512)

-173,670.892*
(8,793.788)

-65,704.545*
(6,329.565)

-101,003.020*
(4,427.001)

Latitude OC
-99,355.933*
(11,320.170)

-180,106.106*
(7,181.448)

-152,058.486*
(15,550.240)

Longitude UC
25,578.757*
(2,995.065)

54,664.593*
(3,619.642)

41,569.656*
(9,953.488)

28,131.271*
(3,102.093)

Longitude OC
-29,826.064*
(6,499.205)

46,250.740*
(5,306.153)

-20,211.006*
(9,052.378)

Size UC
3.179*
(.747)

3.659*
(1.080)

2.030*
(.832)

49.954*
(4.279)

Size OC
2.206*
(1.015)

6.007*
(1.476)

1.092
(.913)

Rooms UC
3,124.756*
(151.255)

3,151.599*
(159.415)

3,473.149*
(234.608)

2,389.635*
(164.612)

Rooms OC
3,955.430*
(380.002)

3,178.829*
(190.318)

3,777.432*
(587.084)

Bathrooms UC
4,764.340*
(287.310)

4,135.247*
(291.760)

2,981.608*
(567.241)

4,194.462*
(293.851)

Bathrooms OC
4,209.396*
(1,220.214)

4,360.784*
(330.255)

2,846.285*
(1,139.098)

House UC
2,035.191*
(312.755)

2,833.709*
(372.158)

2,322.209*
(501.714)

875.886*
(332.324)

House OC
996.170
(515.964)

1,896.713*
(383.870)

6,708.980*
(985.403)

The table presents the OLS coefficients conditional on the cutoff value estimates.
Standard errors appear in parentheses. UC stands for under cutoff and OC stands for over cutoff.

∗ absolute t-values of 2 or above (conditional on the cutoff parameter estimates).
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Table 22: Buenos Aires– Measures of goodness of fit of different models

Model
Cutoff
value

Train Test

MSE
Adj.
R2

# obs.
branch 1

% obs.
branch 1

AIC BIC MSE
Adj.
R2

# obs.
branch 1

% obs. in
branch 1

Sales

Latitude -38.04 3.22E+09 0.64 703 8.6 201,800 201,898 3.41E+09 0.62 177 8.7
Longitude -57.56 3.25E+09 0.64 1,418 17.4 201,885 201,983 3.45E+09 0.62 347 17.0
Size 123.03 2.95E+09 0.67 6,665 81.7 201,085 201,183 3.30E+09 0.63 1,683 82.5
No cutoff 3.39E+09 0.62 8,159 100.0 202,205 202,254 3.65E+09 0.60 2,040 100.0

Rent

Latitude -37.13 1.77E+08 0.57 2,071 90.4 50,066 50,146 2.20E+08 0.50 519 90.6
Longitude -56.86 1.79E+08 0.56 2,135 93.2 50,083 50,164 2.44E+08 0.45 538 93.9
Size 135.02 1.98E+08 0.52 2,051 89.5 50,317 50,397 2.28E+08 0.48 514 89.7
No cutoff 2.21E+08 0.46 2,292 100.0 50,553 50,593 2.50E+08 0.44 573 100.0

Table 23: Bogota– Measures of goodness of fit of different models

Model
Cutoff
value

Train Test

MSE
Adj.
R2

# obs.
branch 1

% obs.
branch 1

AIC BIC MSE
Adj.
R2

# obs.
branch 1

% obs. in
branch 1

Sales

Latitude 4.68 7.60E+16 0.76 8,499 28.9 1,227,148 1,227,264 7.44E+16 0.76 2,108 28.7
Longitude -74.06 7.32E+16 0.77 10,383 35.3 1,226,034 1,226,150 7.01E+16 0.78 2,651 36.0
Size 215.03 7.27E+16 0.77 24,773 84.2 1,225,847 1,225,963 7.17E+16 0.77 6,252 85.0
No cutoff 8.49E+16 0.73 29,422 100.0 1,230,400 1,230,458 8.24E+16 0.74 7,356 100.0

Rent

Latitude 4.69 2.03E+12 0.77 5,398 52.0 323,908 324,010 1.97E+12 0.78 1,341 51.6
Longitude -74.06 2.01E+12 0.77 3,779 36.4 323,771 323,873 1.86E+12 0.79 959 36.9
Size 171.07 2.08E+12 0.76 8,170 78.6 324,138 324,239 1.92E+12 0.78 2,048 78.9
No cutoff 2.32E+12 0.73 10,388 100.0 325,264 325,315 2.19E+12 0.75 2,597 100.0

Table 24: Lima– Measures of goodness of fit of different models

Model
Cutoff
value

Train Test

MSE
Adj.
R2

# obs.
branch 1

% obs.
branch 1

AIC BIC MSE
Adj.
R2

# obs.
branch 1

% obs. in
branch 1

Sales

Latitude -12.10 1.62E+10 0.77 4,585 52.7 229,269 229,368 1.55E+10 0.78 1,194 54.9
Longitude -77.02 1.71E+10 0.75 4,236 48.7 229,744 229,843 1.68E+10 0.77 1,027 47.2
Size 340.10 1.73E+10 0.75 7,921 91.0 229,884 229,983 1.82E+10 0.75 1,971 90.6
No cutoff 2.03E+10 0.71 8,702 100.0 231,239 231,288 2.03E+10 0.72 2,176 100.0

Rent

Latitude -12.15 3.33E+05 0.63 20 1.4 22,224 22,298 4.03E+05 0.39 7 2.0
Longitude -76.95 3.25E+05 0.64 1,351 94.7 22,190 22,264 2.56E+05 0.61 338 94.7
Size 536.10 3.34E+05 0.63 1,393 97.6 22,226 22,300 2.43E+05 0.63 352 98.6
No cutoff 3.77E+05 0.58 1,427 100.0 22,387 22,424 2.79E+05 0.59 357 100.0

Table 25: Quito– Measures of goodness of fit of different models

Model
Cutoff
value

Train Test

MSE
Adj.
R2

# obs.
branch 1

% obs.
branch 1

AIC BIC MSE
Adj.
R2

# obs.
branch 1

% obs. in
branch 1

Sales

Latitude -0.15 4.76E+09 0.57 5,762 69.6 208,056 208,155 4.59E+09 0.61 1,442 69.6
Longitude -78.44 5.17E+09 0.54 6,842 82.6 208,736 208,834 5.22E+09 0.56 1,714 82.8
Size 398.03 3.96E+09 0.65 7,627 92.1 206,534 206,632 3.79E+09 0.68 1,895 91.5
No cutoff 5.49E+09 0.51 8,281 100.0 209,228 209,277 5.42E+09 0.54 2,071 100.0

Rent

Latitude -0.27 5.83E+05 0.14 31 0.7 75,379 75,469 3.61E+05 0.17 9 0.8
Longitude -78.44 5.82E+05 0.15 4,568 97.7 75,367 75,457 3.61E+05 0.17 1,138 97.3
Size 374.04 5.86E+05 0.14 4,581 98.0 75,397 75,487 3.52E+05 0.19 1,142 97.6
No cutoff 5.91E+05 0.14 4,676 100.0 75,424 75,470 3.52E+05 0.20 1,170 100.0
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Table 26: Montevideo– Measures of goodness of fit of different models

Model
Cutoff
value

Train Test

MSE
Adj.
R2

# obs.
branch 1

% obs.
branch 1

AIC BIC MSE
Adj.
R2

# obs.
branch 1

% obs. in
branch 1

Sales

Latitude -34.92 7.10E+09 0.70 390 8.1 123,498 123,588 7.14E+09 0.70 91 7.5
Longitude -56.17 6.72E+09 0.72 1,558 32.2 123,232 123,323 6.81E+09 0.71 410 33.9
Size 150.18 6.82E+09 0.71 3,702 76.5 123,304 123,395 6.70E+09 0.72 894 73.9
No cutoff 7.61E+09 0.68 4,838 100.0 123,820 123,866 7.56E+09 0.68 1,210 100.0

Rent

Latitude -34.87 1.95E+07 0.56 2,097 84.3 48,855 48,936 2.04E+07 0.56 517 83.0
Longitude -56.17 1.97E+07 0.56 924 37.1 48,878 48,960 2.00E+07 0.57 232 37.2
Size 145.04 1.99E+07 0.55 2,361 94.9 48,903 48,985 2.05E+07 0.56 597 95.8
No cutoff 2.13E+07 0.52 2,488 100.0 49,053 49,094 2.19E+07 0.54 623 100.0
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Table 27: Adjusted R2– Sales vs. Rent all models

Model Sales Rent Ratio

Sao Paulo

Ana Rosa 0.85 0.70 1.21
Size 0.83 0.65 1.28
Condo 0.83 0.66 1.27
Latitude 0.81 0.65 1.24
Longitude 0.83 0.69 1.20
No cutoff 0.80 0.61 1.30

Buenos Aires

Latitude 0.64 0.57 1.13
Longitude 0.64 0.56 1.13
Size 0.67 0.52 1.30
No cutoff 0.62 0.46 1.34

Bogota

Latitude 0.76 0.77 0.99
Longitude 0.77 0.77 1.00
Size 0.77 0.76 1.01
No cutoff 0.73 0.73 1.00

Lima

Latitude 0.77 0.63 1.22
Longitude 0.75 0.64 1.18
Size 0.75 0.63 1.19
No cutoff 0.71 0.58 1.22

Quito

Latitude 0.57 0.14 3.97
Longitude 0.54 0.15 3.66
Size 0.65 0.14 4.57
No cutoff 0.51 0.14 3.77

Montevideo

Latitude 0.70 0.56 1.25
Longitude 0.72 0.56 1.29
Size 0.71 0.55 1.29
No cutoff 0.68 0.52 1.30
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