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This paper studies some new properties of set functions (and, in particular, “non-
additive probabilities™ or “capacities”) and the Choquet integral with respect to such
functions, in the case of a finite domain.

We use an isomorphism between non-additive measures on the original space (of
states of the world) and additive ones on a larger space (of events), and embed the
space of real-valued functions on the former in the corresponding space on the
latter. This embedding gives rise to the following results:

o the Choquet integral with respect to any totally monotone capacity is an average
over minima of the integrand;

« the Choquet integral with respect to any capacity is the difference between minima
of regular integrals over sets of additive measures;

= under fairly general conditions one may define a “Radon-Nikodym derivative” of
one capacity with respect to another;

e the “optimistic™ pseudo-Bayesian update of a non-additive measure follows from
the Bayesian update of the corresponding additive measure on the larger space.

‘We also discuss the interpretation of these results and the new light they shed on
the theory of expected utiiity maximization with respect to non-additive measures.
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1. Introduction

The representation of beliefs by real-valued set functions which do not neces-
sarily satisfy additivity has a long history. “Belief functions” were introduced by
Dempster [8, 9] and Shafer [47). Their theory is not directly related to decision
making under uncertainty, nor is their concept of “probability” derived from pre-
ferences. Rather, they assume that “weight of evidence” for events is a primitive,
and study the “belief functions” which are generated by summation of
such weights. Belief functions are a special class of “non-additive measures™ or
“capacities”, characterized by a condition called ““total monotonicity™.

In modern economic and decision theory, on the other hand, terms such as
“utility”” and “probability” are defined via preferences which, at least in principle,
are supposed to be observable. Von Neumann and Morgenstern {51] have defined
a ‘‘utility” by preferences over lotteries, with given probabilities. Building
upon works of Ramsey [38] and de Finetti [7], Savage [42] provided a simultaneous
derivation of “utility” and “probability” from preferences over objects (*“acts”)
which did not presuppose either of these (potentially-metaphysical) concepts. In
the same vein, Anscombe and Aumann [2] provided a similar axiomatization of
“subjective” probability (assuming that probabilities on an auxiliary space are
given). Apart from bestowing ‘“‘cognitive significance” upon the term “probabil-
ity”, the advantage of the axiomatic approach is that this term is derived together
with a procedure to use it. While abstract set functions which represent “beliefs”
do not, in and of themselves, prescribe a way to make decisions in face of uncer-
tainty, the “probability” measure derived by Savage [42] is to be used in a very
specific way, namely in the maximization of expected utility.

However, the expected utility paradigm, which is still the dominant approach
in economic, decision and game theory, was subjected to empirical refutations as a
descriptive theory, and sometimes also to theoretical attacks as a normative one.
Among the most famous experiments, mind-experiments and “paradoxes’ are
Allais 1], Ellsberg [19] and Kahneman-Tversky [35]. (See Machina [37] for a
survey and references.) While Allais [1] and Kahneman—Tversky [35] do not neces-
sarily undermine the concept of probability per se, Ellsberg’s [19] findings are
incompatible with the very notion of an (additive) probability measure as repre-
senting beliefs. That is to say, neither expected utility maximization nor any other
reasonable procedure which relies only on the distributions induced by an additive
probability could account for observed choices.

Although his original motivation was somewhat different, Schmeidler [43-45]
suggested a generalization of expected utility which could accommodate Ellsberg’s
evidence. He provided an axiomatic derivation of both utilities and not-necessarily-
additive probabilities, such that a decision maker’s preferences are equivalent to
expected utility maximization, where expectation with respect to a non-additive
measure is computed by the Choquet integral (Choquet [6]). Conceptually similar
but mathematically different, Gilboa [22], Wakker [52], Sarin-Wakker [41], and
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Fishburn [21] provided additional such axiomatizations for other frameworks, the
latter allowing for intransitive preferences as well.

In a different model, Gilboa and Schmeidler [27] characterized preferences
which may be represented by a utility function and a set of additive measures, in
the sense that preferences obey maximization of the minimal expected utility over
all measures in the given set. (See also Bewley [5] who deals with a set of probabil-
ities with partially ordered preferences.) These preferences can also be represented
by the non-additive model (with maximization of the Choquet integral) in case
the set of measures is the core of a convex non-additive measure. The definitions
will be given below. At this point let us only mention that convex non-additive
probabilities correspond to uncertainty aversion and that belief functions are, in
particular, convex.

The non-additive expected utility theory in general, and with convex
probabilities in particular, has been recently applied to a variety of problems. In
economics and finance, such applications include Dow and Werlang [11, 12],
Dow et al. [13], Epstein and Wang [19b], Simonsen and Werlang [49], and Yoo
[58, 59]. The same mathematical structure, though differently interpreted, is also
used in other fields of decision theory. (See, for instance, Gilboa {23} for multi-
stage decisions and Ben-Porath and Gilboa [4] for the measurement of inequality.)

However, the interest in non-additive measures and the Choquet integral
stems from other applications as well. The theory of transferable-utility coopera-
tive games deals with non-additive set functions, and, at times, also with inte-
gration with respect to them. (See Rosenmuller [39, 40].) In artificial intelligence,
belief functions have been used to represent uncertainty (see Dubois and Prade
[14, 15], Halpern and Fagin [30], Dubois et al. [17], and others.) Following
Dempster, belief functions are also used in statistics in the absence of an additive
prior. (See Huber and Strassen [31], Huber [32], Walley and Fine [54], Walley
[55], Wasserman [56] and Wasserman and Kadane [57].) Additional studies of
mathematical properties of the Choquet integral including Denneberg [10] and
Dyckerhoff and Mosler {18].

In this paper we present some results, which shed new light on Choquet
integration and suggest ways to re-interpret various models using it. Although
the results are interpretable in any domain, we will adhere to decisions under uncer-
tainty for the most part. The counterpart interpretations in other domains will be
obvious.

The mathematical cornerstone of this paper is a well-known theorem in
cooperative game theory, according to which the space of all non-additive
measures (“‘games’) is spanned by a natural linear basis (of “unanimity games”).
This result may be viewed as suggesting an isomorphism between non-additive set
functions on the original space (of states of the world) and additive ones on a
larger space (of all events).

Using this result we show that the Choquet integral with respect to any non-
additive set function v is simply some linear combination of the minima of the



46 I. Gilhoa, D. Schmeidler/ Additive representations

integrand (over various events). Furthermore, if v is a belief function, this linear
combination reduces to a weighted average. Thus, for such probabilities v, the inte-
gral is both mean of minima (over events) and, since they are also convex, minimum
of means (where the minimum is taken over additive measures in the core). (Related
results, with a somewhat different interpretation, were obtained in Jaffray {33] and
Wasserman [56].)

We then provide an interpretation of this result, according to which the space
of real-valued functions on the original space 1s embedded in the corresponding one
on the larger space of events in an integral-preserving way. This view of the Choquet
integral may accommodate models in which the space of states of the world may
be misspecified, in which case the non-additivity of the measure is due to possibly -
missing states, which are accounted for in the larger space.

Re-interpreting the “mean of minima’” result in the context of social choice,
one finds that any social welfare function which satisfies Schmeidler’s [46] axioms is
a linear combination of coalitional “utility levels”, where the utility level of a coali-
tion is simply the minimal utility of each of its members. Again, if the underlying
non-additive measure 1s totally monotone, this linear combination reduces {up to
a positive constant) to a weighted average. (See also remark 5.3 in the sequel.).

Another result which follows from the linear combination representation is
that any non-additive measure is the difference of two totally monotone set func-
tions (i.e., belief functions multiplied by non-negative constants). It then follows
that for every set function v there are sets of additive measures C* and C~, such
that the Choquet integral with respect to v equals the difference of two minima:
one of all integrals with respect to measures in C*, the other with respect to €.
Thus, while minima of integrals are only a subset of the functionals described by
Choquet integration, differences of such minima exhaust all these functionals. We
later discuss further interpretations of this result.

Next we proceed to deal with the question of Radon-Nikodym derivative of
one set-function with respect to another. While straightforward generalizations of
the theorem for the finite case do not seem to hold, it appears that the (larger)
space of events is the appropriate one for such a generalization.

Finally, we address the question of updating a non-additive probability
measure. Recent studies of this problem include Fagin and Halpern [20], Jaffray
[34] and Gilboa-Schmeidler [28]. The latter axiomatize the Dempster—Shafer
update rule (sce Dempster [9]) as a “‘pessimistic” one, and also axiomatize a corre-
sponding “optimistic” one (also used in Gilboa [24]).

The isomorphism between non-additive measures and additive ones (on the
space of events) suggests a new look at the updating problem: since there is little
disagreement regarding the way additive measures should be updated, one may
update the additive measure and project it back to the original space, to obtamn
an updated, possibly non-additive, measure on it. This construction leads to the
“optimistic” update. Using a similar update with the dual space gives rise to the
“pessimistic” one. (See Dubots—Prade [15] and Lipman [36].)
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In this paper we restrict ourselves to the case of a finite space of states of the
world. All the mathematical resuits we present range from immediate to simple.
Indeed, practically all of them have natural counterparts in the general case,
where the mathematics is considerably more complicated. In order to highlight
the conceptual issues, we chose to focus here only on the finite case, and deal
with the general one in Gilboa—Schmeidler [29].

The rest of the paper is organized as follows. Section 2 presents notations and
definitions, and section 3 is devoted to quoting some known results. From section 4
on, we present our new results and discuss their interpretation.

2. Notations and definitions

Let Q be a nonempty set of states of the world and let T be a finite algebra of
events defined on it. We will assume w.l.o.g. that ¥ = 2%

A function v: & — R with v(@) = 01is called a non-additive signed measure or 2
capacity. The space of all capacities will be denoted by ¥ and will be considered as a
linear space (over R) with the natural (pointwise) operations.

For v € ¥V we will use the following definitions:

(1) v is monotone if A C Bimplies ¥ (A4} < v(B) for all A,Be X

(2) v is normalized if v(X) = 1.

(3) v is additive if AU B) =v(Ad) +v(B) forall 4,Be L with ANB=0. An
additive v is also called a signed measure.

(4) v is convex if for every A,B€ 5, v(AUB) +v(ANB) > v(d)+v(B). It is
superadditive if the above holds for all 4,8 € £ with AN B = 4.

(5) v is nonnegative if v(A) > 0 forall 4 € .

(6) v is torally monotone if it is norbnelgative and, for every 4,,...,4, €%,
VUTa14)) 2 2irierc n}}("'l)i (e r4))-

-----

(7)  vis a measure if it is nonnegative and additive.
(8)  wis a belief function if it is normalized and totally monotone.

Observe that additive capacities are totally monotone, totally monotone
capacities are convex and convex ones are superadditive.

We denote the space of real-valued functions on (2 (or random variables) by
F={f|f:0=R}=R%

For v € V and f € F, the Choquet integral of f w.r.t. (with respect to) v 18
defined to be

0

[reo= [ttt stz par+ | gt te) 2 ) - vl
0
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Note that it is always well-defined. Also, observe that this definition coincides
with the standard one if v is additive.
For v € V we define the core to be

Core (v) = {p|(i) pis a measure on Z;
() p(d) > v(4), VA € T;

(iil) p(Q2) = v(Q)}.
Note that we allow for a measure to be identically zero. For instance, if v = 0,
Core (v) = {v}.

Tt will be useful to denote &' = T\ {#}.
For T € &, define the unanimity game on T (‘‘elementary belief function™ in

Jaffray [33]) to be the capacity uy € V defined by

1 A2T,

0 otherwise.

ur(Ad} = {

3. Some known results

The following results will be used in the sequel.
THEOREM 3.1 (Shapley [48])

Every convex ﬁonnegative game has a nonempty core.
THEOREM 3.2 (Rosenmulier [39, 40]. See also Schmeidler [44, 45])

A monotone game v is convex if and only if

iy Core (v) #8;
(i) foreveryf €F,

dev: min dep.

p € Core(v)

Next is the canonical representation theorem which will drive basically all the
following results:

THEOREM 3.3

The set {ur}ycg- is a linear basis for ¥. The unique coefficients {a7}res:
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satisfying

v = E a'ruy

Tedn’

are given by
%= SO (-1)TBly(s) =
ScT

=o(T)— > (=)"u(ne, Ty,
{716#1C{1,..n}}

- where 7; = T\{w;} and T = {wy, ... ,wa}

In the sequel, {aF} will refer to the above éoefﬁcients.
THEOREM 3.4

For every v € V, v is totally monotone iff oy > 0 forall T € T’

Theorem 3.4 is due to Dempster [8] and Shafer [47). Both theorems 3.3 and
3.4 are generalized in Gilboa—Lehrer [26] to real-valued functions defined on arbi-
trary finite lattices.
4, The Choquet integral: min of means and mean of mins

We first have:

OBSERVATION 4.1

The Choquet integral is linear in the game v. Thatis, forallv,w € V, o, B € R
and f € F,

J fd{ov + pw) = aJ fdv—i—ﬁj Sdw.
It is also useful to state the following lemma:

LEMMA 4.2

Forfe Fand T € &',

J fdur = min{ f{w)w e T}.
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Proof
Immediate. (Also appears in Rosenmuller [39].) O
We can now prove:

THEOREM 4.3

(A version of this result appears in Wasserman [56]. See also Smets [50] and Dubois—
Prade [14].)
Foreveryve Vand f € F,

de'v = > af {gleirg,f(w)}-

TeZ'

Proof

By the auxiliary results above,

l f :| 0

Recall that if v is totally monotone, a% > Oforallr € ' 1f, furtherrnore vis
normalized, i.e., it is a belief function, then

Teh!

which implies that the Choquet integral of a function w.r.t. v can be represented as a
(weighted) average over all minima of the function f, i.e., over its minima on all non-

empty events.
In one extreme case v is additive, which is easily seen to be equivalent to

ar=0 forall T with |T| > 2.
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In this case, indeed, the integral of f w.r.t. vis an average of the values of f - or, if
you will, of the minima of f over singletons.
Another extreme case is where v = ug, and the integral of f w.r.t. vis simply

the minimum f obtains over all of €.

While both these extreme cases were known to be special cases of the Choquet
integral, theorem 4.3 shows that any Choquet integral (to be precise, the integral
w.I.t. gny game v) is no more than some average over minima. (Where “average”
has its usual meaning if v is normalized and totally monotone.)

On the other hand, let us recall that totally monotone capacities are, in
particular, convex (though the converse is faise). Hence, applying theorem 3.2,
the Choquet integral of some f w.r.t. a totally monotone v may be also represented
as the minimum of all integrals of / w.r.t. measures in a certain set (the core of v). If
v 1s also normalized, each of these measures p is simply some “‘weight” vector, and

the integral of / w.r.t. p is a p-average over f’s values.
To sum, if » is a belief function, the Choquet integral w.r.t. v is both a mini-

mum of averages and an average of minima:

COROLLARY 4.4

Assume that v is a belief function. Then for every f € F

[ rav= pgs [min /(o)

= Join > p{whf (w).
€0

peCorelv o

5. Completion of a misspecified model

A few more words on the interpretation of theorem 4.3 may be in order. The
approach of Dempster [8, 9] and Shafer [47] is, roughly, the following: evidence
supporting our belief in certain events is usually not well-specified enough to be
given as a distribution over states of the world. Rather, they assume there is a func-
tion m: 2% — [0,1] with m(@) = 0 and S.7cq m(T) =1 such that m(T) is the
“direct evidence” for T, which cannot be further specified in terms of subsets of
T. The belief in an event T is given by

o(T) = Z m(S).
SCT

(Obviously, in our terms m(S) = ays.)
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One of the reasons one gets direct evidence for T but not for any subset
thereof may be model misspecifications, i.e., that the states of the world included
in the model do not exhaust the “actual” ones.

Thus, one is led to an extended model, {2, in which forevery T € & ' there is
O € Q, and the belief function v corresponds to the measure u, on 2 given by
to(@7) = a¥. In this interpretation, oy is the relative weight of evidence for T
which cannot be ascribed to any subset thereof. That is, it reflects ways in which
T may obtain despite the fact that none of its specified subsets obtains.

A function f:Q — R may be naturally “extended” to Q by f(&r) =
min,,c rf (w). Then, indeed, theorem 4.3 may be written as '

| rav=| Fou.

Rt Q

In other words, the non-additivity of the *“probability” v may be explained by
“omitted” states of the world. If those were introduced into the model explicitly, the
non-additivity would disappear. By definition of “omitted states”, the decision
maker does not know “how many’ states were omitted. However, for most pur-
poses they can be lumped together into one state per event. Thus, the extended
model contains 2 — 1 states. B

Note that restricting the extension f+—f to indicator functions yields a
natural embedding of events in  into events in . That is to say, for T C £,
T # @, there corresponds :

T={Sez|SCcT}cO=2
and we have
w(T} = p(T).

Furthermore, notice that the function ¢ : v p, is linear, continuous, and
together with ¢ : f — f, preserves integral values for all / € F (by theorem 4.3).

We therefore conclude that every decision model with a non-additive measure
v on £ may be embedded in a model with an additive measure p, on & ‘. Obviously,
v and p, contain precisely the same information and both require (2'”| — 1) real -
numbers for their specification, Yet, the extended model is more “wasteful”: it
includes many functions (in RT) which do not correspond to any function in the
original space F. Put differently, the objects of choice in the extended model,
{fif € F}, are each fully characterized by || values (i.., by f({w}) for w € Q),
though they are points in a (2Iﬂi — 1)-dimensional space.

Looked at from the opposite direction, then, a non-additive measure on Q
can be viewed as a concise way to represent beliefs and preferences on a larger
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space. Instead of (2 — 1) dimensions with an additive p,, one may use || dimen-
sions at the expense of additivity (of v). Obviously, this more concise representation
may hold only if the original space has a very particular structure (of T) and if all the
available acts f : ¥ — R satisfy

F(1) = min f({w}).

Remark 5.1

One may wonder whether minima play here a special role (as opposed to, say,
maxima) and if so, why. Indeed, when one considers belief functions, the maximiz-
ation of Choquet-expected utility is uncertainty averse, and the minima capture
this intuition. (Both in the “mean-of-min” and in the “‘min-of-mean” theorems.)
However, in general Choquet expected utility may be uncertainty-seeking as well.
Furthermore, all the theory (or theories) with minima have natural dual theories

with maxima.
For instance, if one defines, for T € I, T # £,

1 ST,

WT(S)Z{O SCT.

It is easy to check that {wz}r.q is also a linear basis for V. (wr is the “dual” of ur.
in the sense

wr(S) =1 —upe(S°) VSEE)

It is also immediate that for all f € F,
J fdwr = max f(w)

and therefore, if v =73 "7.q frwr,

dev—ZﬂT max f(w

74 eT

{For additional duality resulté, see Gilboa [25].)
However, the set of capacities v for which 37 > 0 is different from (and the
dual of) the set of totally monotone capacities.
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Remark 5.2

The notion of a “misspecified model” above is rather vague. It may be
formalized as follows: assume that the primitive objects of belief are propesitions,
endowed with some logical structure, and that subsets of a state space are derived
mathematical representations of propositions. Specifically, assume we are given a
set of propositions P endowed with two binary relations on it, I, IN € P to
be interpreted as ‘“implies” and ‘“‘implies not”, respectively, and a function
v: P — [0,1] measuring “belief”. A pair (Q,1) where Q is some abstract set and
PP — 29\{6} is a model for (P,1,IN) if the logical relations are retained, that
is, if
©)  Vpge P, plg=v(p)<¥(g)

(i) Vpge P pINg=v(p)N(g) =0
(i) Yp.g€P, ¢(p)=1(q) onlyifplgandglp.

Abusing notation, we define v on the range of ¥ by v{{¥(p)) = v( p). Note
that v is well-defined provided that v(p) = v(g) whenever p I gand g I p.

We call a model (Q, ) complete w.r.t. v if v can be extended to a measure
on . If it cannot, (92,7) is incomplete w.r.t. the beliefs v. However, if range
() = Z\{@} and v happens to be totally monotone on {2, one may consider the
completion of (9, v) which is (', ¢) defined by

5’ =2M\{0},
¢(p) =(p) ={4 € Z'|4 S ¥(p)}.
Notice that for all Q2 the map B— B = {4 € ©'|4 C B} satisfies

i) ACB= ACBE;
(i) ANB=0=ANB=0.

Hence, if (Q,¢) is a model for (P,I,IN),sois (', ¢). However, (L', ¢) isa
complete model w.r.t. v (extended by ) even if (2,7} is not.

Remark 5.3

The interpretation of theorem 4.3 in the context of social choice may also be
of interest. Consider a social welfare function, or, more generally, a social prefer-
ence order, satisfying the axioms of Schmeidler [46]. (From a conceptual view-
point, the most important of these is “comonotonic independence”.) Such a
function is representable by a Choquet integral of some utility function with respect
to a non-additive measure (or a “‘game”) v.

As in the context of uncertainty, two well-known special cases of such func-
tionals are the utilitarian function (if v is additive) and the egalitarian one {if
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v = ug). And here again we find that every such functional is a linear combination of
“utility levels” of all coalitions, where these are defined in the egalitarian spirit: the
“utility level” of a coalition is the minimal utility of its members. Thus, this class of
social welfare functions can be thought of as “utilitarian” with respect to coalitions
and “‘egalitarian” with respect to individuals within coalitions.

Similarly, one may define 2 “completion™ of a society 2 to be the ‘“‘society”
T’ whose members are (nonempty) coalitions of (2. A utilitarian social preference
order in the “society of coalitions™ corresponds to a possibly non-utilitarian (but
Choquet-representable) preference order in the society of individuals.

Another special case of these functionals was studied by Ben Porath and
Gilboa [4]. They axiomatize — under the assumption of a linear utility function of
income — the social welfare functions which are a linear combination of total
income and (a version of) the Gini index for the measurement of inequality. It
turns out that these are precisely the Choquet integrals with respect to a symmetric
non-additive measure v, whose coefficients satisfy

al =0 if{T|>3.

In other words, while utilitarian functions are concentrated only on singleton
coalitions, these functions are concentrated on singletons and pairs. Thus they can
also represent envy-aversion: the introduction of terms such as

S = min{ £(0),f(7)}, ij€Q,

reduces the overall impact of a “*gift”" given to { f-)rich individuals; the coefficient of
such a term,

#v({f:j}) = a?x‘,j}

may therefore be interpreted as the relative weight put in the social welfare function
on i’s envy in j (or vice versa). '

It should be noted, however, that such functionals, while obviously nonlinear
in the payoff distribution f, are, in a sense, ““linear in envy”. Consider, for instance,
asociety {0 = {1, 2,3} and a payoff (or income) distribution (0, 1, 1). According to a
non-additive measure v with

al =0 foriT|>3,

individual 1’s envy in 2 and 3 is the “sum” of his envy in each of them. More gen-
erally, one may suspect that individual 1 in this example will feel even “greater”
envy that this “sum”. After all, s/he may justly claim that “Everyone is better off
than I am™. Thus, more general functionals may capture the fact that envy itself
is not always linear.
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Choquet integration with respect to general (say, totally monotone) non-
additive measures represents a rich enough class of preferences to reflect nonlinear
envy. On the other hand, every totally monotone v induces a functional which is
some average of payoffs and of the “envy level” in various coalitions. (Note that,
in general, these functionals may not be symmetric. For instance, one may only
envy one’s neighbors, in which case not all pairs (triple, quadruples) would be
equally weighed in the social welfare function.)

6. The Choquet integral: min minus min

As stated in theorem 3.2, if a game v is convex, the Choquet integral of a
function f w.r.t. v is the minimum of integrals of / w.r.t. additive set functions.
However, when v is not convex such a result cannot be proven. (The fact that
Core(v) will not do as a set of measures follows from theorem 3.2 itself. Gilboa-
Schmeidler [27] prove that other sets cannot serve this purpose either.)

In many applications, the min-of-mean representation is both useful and
intuitive. For instance, maximizing the Choquet integral w.r.t. a non-additive
set function is typically less palatable to economists than maximizing the minimal
(regular) integral w.r.t. a set of (regular) measures. In this section we provide an
extension to theorem 3.2, which will represent any Choquet integral (even w.r.t. a
non-convex v) in a more intuitive way.

We start with:

LEMMA 6.1

For every v € V there exist totally monotone vt v~ € V such that

Proof

Given ve V, consider the coefficients {a%}rep:. Define TF =
{T € &'|a% > 0}, and

vt = Z arur, v = Z (—ar)ur.

TeT™t teL\Lt

It is obvious that v = v' — v~, and that (by theorem 4.4) both v* and v~ are
totally monotone. O

Next we have
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THEOREM 6.2

For every v € V there exist two non-empty sets of measures on ¥, CT and
C~,such thatforall f € F

= mi dp — mi dp.
dev Prglcqup prguCn_pr

Proof

Given v, let v* and v~ be the totally monotone capacities provided by lemma
6.1. By observation 4.1,

dev = de'u"' — dev_
for all f € F. Defining
C* = Core(v"), C~ = Core(v7) |
and using theorem 3.2 (twice) completes the proof. O
_ We note that neither v*, v~ in leroma 6.1 nor C*,C” in theorem 6.2 are
unique. Furthermore, the representation of theorem 6.2 may also hold with sets

C*, C™~ which are not the cores of totally monotone capacities. For instance, con-
sider, for @ = {1,2, 3}, the capacity

v =up 2y U3y U3y T E23)

which is convex but not totally monotone. Then, by theorem 3.2, j-dv has one
representation with

C* = Core(v), C~ = {0},
which differs from that obtained in the proof of theorem 6.2.

However, it is easy to see that v~ and v~ in lemma 6.1 are the unique totally
monotone capacities solving

Minv*{(Q) + v (2)

subject to v7 —v” = v.
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In other words, if one defines the norm of v € ¥ to be
ol = > la?,
TeX’

then we have:
THEOREM 6.3

For every v € V there are unique totally monotone v*,»™ € ¥ such that

v=v" —v

and

Boll = [lo™ [l + o™i

Proof

Immediate. O

Similarly, one may make C* and C~ in theorem 6.2 unique by further requir-
ing that they be cores of totally monotone capacities, and that for all p™ € C™,
pec,

ol = 1tp™ i + 1l 271

(Notice that ||v]| = v(Q) if and only if v is totally monotone, and, in particular

21l = p(S2)

for every measure p.)

The results above reveal yet another facet of maximization of the Choquet
integral. Suppose, for simplicity, that f(w) € [0,1] for all w € Q) and all possible
acts f € F. (Recall that the utility function derived in Savage [42] is bounded.
See Fishburn [21].) Then the maximization of [ fdv over F is equivalent to maximiz-
ation of

min dep mm dep = mm dep-!- max J(—f)dp,

peC*

or of

min dep+ max J(l - f)dp.

peC™ pelC~
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Considering f(w) as payoff, (1 — f(w)) may be taken to be a measure of dis-
satisfaction with or disappointment from the outcome f(w). Thus the Choquet inte-
gral is (up to a shift of size v™{Q2)) the minimal expected payoff (according to c)
plus the maximal expected disappointment (according to C7). Also note that
changing the relative weights of “min” and “max” above reduces to multiplying
all measures in C* (or in €™, or in both) by some non-negative constant, and there-
fore remains a Choquet integral with respect to a (possibly) different v € V.

In other words, the class of decision rules

{Maxjfdv vE V}
is precisely equal to

{Max[a min dep-i— (L— a);gzgg J(l —f)dp]

pecC™

ct,Cc”

non-empty closed sets of probability measures and a 6[0,1]},
which may be thought of as a variation on Hurwicz’s a-maxmin decision rule.
7. Radon—-Nikodym theorem for non-additive measures

For many applications, a version of the Radon—Nikodym theorem for not-
necessarily-additive set functions would be useful. However, one cannot hope for
such a theorem in a direct translation from the additive case: consider the claim
that for some v € V, for all w € V there is an f* € F such that

w(S) xjfwdfu
5

(where the integral restricted to S is appropriately defined). But if |©2] = n, the
dimension of ¥ is (2" — 1) while that of F is n, and one can hardly expect such a
result to hold. :

However, the canonical decomposition theorem, which basically represents
non-additive set functions on § as additive ones on X', suggests a natural way to
extend the Radon—Nikodym theorem and define the derivative of one set-function

w.r.t. another.
We first need the following definition: for w, v € V, w is said to be absolutely
continuous w.r.f. vif '

(i) forevery A,,...,A, €%,

-----

(i) forevery T € T with |T|=1, »(T) = 0 implies w(T') = 0.
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OBSERVATION 7.1

If w is absolutely continuous w.r.t. v, then for all T € £'aj =0 implies
ar =0.

Remark 7.2

Note that the converse does not hold. Let 2 = {1,2,3} and define v by

Then for all we V, (al =0 implies o} =0) trivially holds. However, for
4, ={1,2}, 4, = {3} we have

v({1,2,3}) =v({1,2}) +v({3}),
which certainly does not imply the same equality for alt w e V. O
We can now state and prove
THEOREM 7.3

If v, w € V are such that w is absolutely continuous w.r.t. v, then there exists a
function g: £’ — R such that for all f € F,

[ raw= 3 ota(rymin rie)

Tel'!

and, in particular, for every 4 € X,
wd)= > ojg(T).
TCATeL!

The function g will be calied the derivative of w w.r.t. v.
Proof

Forall T € £’ such that o} # 0, define g(T) = af/a}., and define g(T") arbi-
trarily otherwise. The result then follows from theorem 4.3. O

In general, one may measure the non-additivity of veV by the coefficients
{er}r: v is additive iff these coefficients vanish for non-singleton sets 7. The



1. Gilboa, D. Schmeidler] Additive representations 61

larger are these coefficients in absolute value, the more does v deviate from additiv-
ity. Hence, one may suggest the following measure of non-additivity:

S el

(Ten' T|>1}

Similarly, one may use the coefficients {a7} to compare the degrees of non-
additivity of different measures. Specifically, given v, w € ¥, assume that g is the
Radon-Nikodym derivative of w w.r.t. v. Then |g(7')| is a measure of the relative
non-additivity of w and v at 7, and g(T'} is a measure of their relative uncertainty
aversion. For instance, if g(7) > 1 and v is totally monotone, we may say that w is
more uncertainty averse thanv at T. '

8. Pseudo—Bayesian updates

The problem of updating beliefs is central to statistics, as well as to apph-
cations in artificial intelligence, economic theory and so forth.

Based on “‘Dempster rule of Combination™ for belief functions in general,
Dempster [9] (see also Shafer [47]) suggested that, given an event 4 € X !, the new
belief function vy € V¥ should be '

_o({4NB)U4°) —v(4°)
va(B) = 1~ (A

Gilboa [24] used, without any axiomatic derivation, the more straightforward
adaptation of Bayes rule:

v4(B) = v(A N B)/v(A).

Gilboa and Schmeidler [28] approached the update problem axiomatically.
From axioms on preference orders parameterized by events (the event assumed to
be known) they derived pseudo-Bayesian update rules. Two of them, which corre-
spond to a “pessimistic” and an ‘“‘optimistic” interpretation, ended up being the
two update rules given above. Furthermore, the pessimistic one, which coincides
with the Dempster-Shafer rule, also has an interpretation of a maximum likelihood
rule. Given that an event 4 has occurred, out of all Core(v), only those measures p
which a priori maximized p(4) are retained in the set of measures, and they are each
updated according to Bayes' rule. _

The canomical representation theorem sheds a new light on the update prob-
lem: since to each v € V there corresponds an additive ., on £, one may try to
update ., according to Bayes’ rule, and then *‘project” the updated g, back to Q.
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However, it is not entirely clear how one translates the fact that “4 has
occurred” from  to &'. To formulate this issue, first define an update rule to be
a function U: ¥V x £’ — ¥V with the interpretation that U(v, 4) represents the
updated beliefs given that 4 € &' has occurred and v € V represents the original
beliefs. )

For every translation function 7: 2 — 2% one may define an update rule
UT:V xS'— V as follows: given ve V and 4 € &', update g, on ' as if
7(A) has occurred, and define U” (v, 4} by the updated pu,. That is,

U, A) = 3 (o) 'us,

Ser’
where
0 S & 7(4),
(@) = { —=2— Ser(4).
ar
Ter(d)

In particular, define 7%(4) =4 = {Be Z'|B C 4}.
THEOREM 8.1}

(See Dubois—Prade [16] for closely related results.)
The translation function 7° gives rise to the optimistic update rule. That

is, forallve V,4€X and B€ L,

U™ (0, 4)(8) = 2T

whenever these are well-defined. Moreover, both sides of the equality are well
defined for the same events 4 € &".

Proof

Notice that

0 SZA,
(ad) ={ ~—=— S5C4,

> of

Ter(4)

"We are grateful to Bart Lipman for pointing out an error in a previous version of this theorem.
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lf'U(A) = ZTQA a;" > 0. Then

UTO(’UJA)(.B) _ Z (a§)f — Z (ag).r _ U(S(S)B) .

TCH SCBNA

Using thé dual base {wr} 15, one may obtain a similar derivation of the Dempster—
Shafer (*pessimistic”’) update rule. {See Dubois—Prade {16] and Lipman [36].) {J

9, Conclusion

This paper suggests a reinterpretation of a known theorem from the theory of
cooperative games as an embedding of not-necessarily-additive probabilities in
additive ones {on a larger space). Since both the embedding function and the
Choquet integral are linear, a variety of additional results follows, which shed
new light on Choquet-expected utility theory. Furthermore, results and tools
regarding additive measures (such as the Radon-Nikodym theorem and Bayes’
update) may be naturally extended to non-additive ones using the isomorphism
between these spaces. We trust that additional results may be derived in a similar
manner, and therefore propose this isomorphism as a basic tool for the analysis
of non-additive measures and Choquet integration with respect to them.
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