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We study a model of repeated games with the following features:

(a) [nfinite histories. The game has been played since days of yore, or is so
perceived by the players:

(b) Turing machines with memory. Since regular Turing machines coincide
with bounded recall strategies (in the presence of infinte histories), we endow
them with “‘external’” memory;

(c) Nonstrategic players. The players ignore complicated strategic considera-

tions and speculations about them. Instead, each player uses his/her machine to
update some statistics regarding the others’ behavior, and chooses a best response
to observed behavior.
Relying on these assumptions, we define a solution concept for the one shot game,
called steady orbit. The (closure of the) set of steady orbit payoffs strictly includes
the convex hull of the Nash equilibria payoffs and is strictly included in the
correlated equilibria payoffs. Assumptions (a)-(c) above are independent to a
large extent. In particular, one may define steady orbits without explicitly dealing
with histories or machines. © 1994 Academic Press, inc.
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The thing that hath been, it is that which shall be; and that which
is done is that which shall be done: and there is no new thing under
the sun.

Ecclesiastes 1:9

1. INTRODUCTION

Mulitiperiod decision problems in which the decision maker is faced
with uncertainty are prevalent both in the scientific literature and in what
is sometimes referred to as the ‘‘real world.”’ In fact, it is difficult to give
examples of “‘real world”’ problems faced by individuals or organizations
which do not involve the time dimension or some uncertainty. Many
models dealing with such problems may be found in the classical literature
on statistical inference, dynamic programming, and repeated games. The
strategies devised in these contexts tend to be very complex. Indeed, in
many cases it becomes unlikely to assume that decision makers do use
such strategies. Following Simon (1972, 1978}, who introduced the idea
that decision makers are only boundedly rational, game theorists have
recently suggested models in which computational models such as finite
automata and Turing machines are used to capture the intuitive notion
that the decision maker can implement only strategies with a bounded
complexity (defined in the appropriate sense). (See Aumann (1981), Rubin-
stein (1986), Neyman (1985), Ben Porath (1993), Kalai and Stanford (1985,
1988). Megiddo and Wigderson (1986), Binmore (1986), Gilboa (1988),
Gilboa and Samet (1989), Abreu and Rubinstein (1988), Stanford (1987),
and others.)

The paper studies three new assumptions.

a. Infinite history. In many cases of interest, there is no “‘stage 0.’
Organizations and individuals alike have to solve problems for which a
certain history is already given. Even if an initial stage did occur some-
where in the past, the decision makers tend to perceive long histories as
infinite ones, in the sense that they cannot recall the initial stage and
reason about it. Rather, they tend to reason in such terms as: ‘‘It has
always been the case that...”” or “‘Traditionally....” and so forth.
This is especially true for organizations, where a certain decision maker
typically assumes his/her position long after the organization was founded.
It therefore seems that an infinite-history model may be a more accurate
description of reality from a psychological (or ‘*subjective’’) viewpoint,
even if it is less so from an actual (or ‘‘objective’’) perspective. (See also
Schwartz (1974) for a discussion of and results on repeated games with
infinite histories.)
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b. Turing machines with memory. Modeling bounded rationality, we
make one of the weakest and least objectionable assumptions, namely,
that decision makers use (or can be modeled as) Turing machines. More
specifically, a decision maker’s reasoning is assumed to be implementable
by a Turing machine (an ‘“‘algorithm’’} which, at each point of time, starts
running (from *‘the beginning of the program’’), may consult history, and
eventually halts with a decision. Note that, as opposed to finite automata,
Turing machines are assumed to start their computation at each stage at
their ‘“‘initial state.”” This seems to be the natural assumption, since a
‘“‘computation’’ or ‘‘run’’ of a Turing machine is a sequence of state
transitions, which only gets its intended meaning when considered as a
whole. Put differently, in order to benefit from the power of this computa-
tional model, one has to decouple the computation stages (i.e., the transi-
tion from state to state) from the decision stages (i.e., consecutive periods).
(See the discussion in Section 5 below.) However, a very simple model
presented in the sequel shows that in the context of infinite histories, a
decision maker’s strategy which is implementable by a Turing machine
which always halts is no more than a finite recall strategy; i.e., each choice
is determined by the last k periods for some k = 0. We therefore suggest
strengthening the computational model by allowing some memory to be
carried over from one stage to the next.

c. Nonstrategic players. We introduce a behavioral assumption that
captures a different dimension of bounded rationality: each player consid-
ers the behavior of all other players as a Nature phenomenon, rather than
strategic players. Observing a certain history, each player assumes that
the others are about to play in the same way they have played in the past
after similar histories. This assumption, which may also be made in a
repeated game with ‘‘stage 0,"” is supposed to express a somewhat simplis-
tic approach of an individual player: not knowing the other players’ re-
peated games strategies, rather than getting involved in sophisticated rea-
soning about them and probability distributions on these huge spaces, the
player simply assumes that they are as close to constant as possible. Of
course, it would be silly on the part of the player to assume they are
actually constant when he/she has contradictory evidence. However, the
player chooses to believe in the simplest theory that explains his/her
observations, namely, that the other players’ behavior after each subhis-
tory this player can remember is governed by a fixed distribution function.
(See Gilboa (1990) for discussion and additional references.) Based on
past experience, the player would compute an estimate of this distribution
and choose a best response action (or mixed action) with respect to it.

Applying these three assumptions, we consider ‘‘steady orbits,”” de-
fined, roughly, as follows: given a one-shot game and an integer for each
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player, indicating the memory length of this player, each player is allowed
to choose a (possibly different) mixed strategy (in the one-shot game) for
every possible subhistory he/she may observe. Given these choices, we
can compute, for every history, the probability of each play of the game
in the next stage. Thus, we have a Markov chain, the states of which are
(finite) subhistories.

Assuming that the game is played long enough with these strategies,
each player would have the chance to estimate the distribution over the
other players’ moves (given his memory) quite precisely, and should his/
her strategies fail to be best response, he/she would change it. A steady
orbit would therefore be defined, loosely, as a selection of strategies that
are a fixed point of this process.

We continue to study the set of payoffs that correspond to steady orbits.
We prove that the closure of this set strictly contains the convex hull of
Nash equilibria payoffs and is strictly contained in the correlated equilibria
payoffs.

We note that the definition of steady orbits in repeated games is indepen-
dent of the preceding analysis. Thus, one may study steady orbits by
themselves, where a conceptual basis may be given by assumption (c)
above and the assumption of bounded recall. (In this context, see also
Lehrer (1988a,b) and Aumann and Sorin (1989).)

In Section 2 we present the basic model. This includes only one decision
maker who confronts uncertainty (modeled as ‘‘nature’s choice™). We
also suppose that the same decision maker has lived since days of yore
and will live to eternity, and that both he/she and nature choose their
actions without randomization. This very primitive model captures some
of the important features of a model with infinite history and these are
discussed in this section.

Section 3 introduces bounded rationality into the model by defining,
discussing, and studying the implications of recursive strategies. Its main
point is that the standard model of Turing machine is not powerful enough
to implement some intuitively simple strategies in the presence of infinite
histories.

Section 4 briefly comments on the extension of the basic model to mixed
moves. The definition of ‘‘Turing machine with memory’ is given in
Section 5. We also prove there that there are optimal Turing machines
with memory for a decision maker facing a Nature phenomenon that does
not ‘‘remember’’ more than he/she does.

In Section 6 we apply these results as a conceptual basis for the analysis
of games. Relying on the implicit behavioral assumption of ‘‘nonstrategic
players,” we define steady orbits in repeated games and prove the results
mentioned above. This section may be read separately.

Finally, Section 7 contains some concluding remarks.
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2. THE Basic MoDEL FOrR ONE DEcCISION MAKER

Let A be a finite and nonempty set of actions available to the decision
maker (henceforth, DM) at each period. Let S denote a finite and nonempty
set of possible environments or states of nature which may occur at each
period. Define C = A x § to be the set of possible circumstances. A
history (of circumstances) is a function ¢: {—i|i = 0} - C. A circumstance
c(—1i) will also be denoted by ¢_; and, when no confusion is likely to
arise, by ¢_;. Thus ¢ may also be writtenas (..., ¢_;, ..., C_y, C_y, Cp).
The set of all histories will be denoted by C ~ ™. A future (of circumstances)
is simply an element ¢ of C”. We will write ¢ = (¢, ¢, ...) or, when
possible, (¢, ¢5, ...}

It will prove useful to define the natural projections of the set of circum-
stances C on A and S: let «: C — A and s: C — S be the unique functions
satisfying ¢ = (a(c¢), s(c¢)) for all ¢ € C. The projection functions a and
s are extended to C =" and C~ by the natural pointwise definition. I.e.,
a(e) = (.., alc_y), aleg)) and s(¢) = (..., s(c_y), s(ey)) forallc € C77,
and a(c) = (a(c)), alc,), ...y and s(¢) = (s(c¢)), s(cs), .. )forc € C™.

We now define some operations on histories and futures:

(1) For a history ¢ € C ~* and n = 0, define the n-truncation of ¢,
denoted by ¢ ~"*, to be the history (..., ¢_,,p, ¢, ) E C™".

(2) For a future ¢ € C* and n = 0, the n-truncation of ¢, denoted
¢, is the future (¢, 1, ¢, 02, .. ) E C™.

(3) For a history ¢ € €™~ and n = 0, let the n-suffix of ¢, denoted
¢ ", be the finite sequence (¢_, ., |, C.,2ys...,C) EC" (Forn =0,¢7"
is always the empty string. henceforth denoted by ¢*.)

(4) For a future ¢ € C™ and n = 0, define the n-prefix of ¢. denoted
by ¢”, to be the finite sequence (¢, ¢5, ..., ¢,) € C". (Forn = 0, ¢"is
always the empty string ¢°.)

(5) For a history ¢ € ¢ ™~ and a finite sequence ¢” = (¢}, ¢y, ...,
¢,), define the concatenation of ¢ and ¢, denoted ¢ - ¢”, to be the history
(o €€y Oy Cay ey ) ECTTL

Next we turn to define strategies. A DM strategy is a function o
C *— A. A set of all DM strategies will be denoted by X. Nature's
strategy is a function 8: s(C~ ") — §. Let © denote the set of all nature
strategies. The future function f maps C ™™ x % x ® into C™: for (¢, o,
9) € C* X % X 0, the future determined by (¢, o, 0), i.e., f(c, o, 6),
is the element ¢ € C™ such thatforalln =1, ¢, ., = (o(c-¢"), 0(s(c-c"))).

Given a triple (¢, o, ) € C ™" X 2 x 0, we say that ¢ is consistent
with o and 8 if forevery n = 1, ¢_, ;, = (o(c™"), 8(s(c~")). A history
¢ is possible if there exist (o, ) € 3 x O such that ¢ is consistent with
o and 6.
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A history ¢ € C ™7 is said to be cyclical if, for some k = 1, ¢ 7** = ¢,
In this case ¢ will also be said to be cyclical of order k and ¢ ~* will be
called its cycle. Likewise, a future ¢ € C* is cyclical if for some k = 1|
¢k* = 7, Cis cylical of order k and ¢* is its cycle.

We can now state two observations (the proofs of which are immediate).

OBSERVATION 2.1.  Suppose that ¢ € C ™~ is consistent with o € X
and 8 € O, and that ¢ is cyclical of order k for some k = 1. Then f(c, o,
0) is also cyclical of order k and its cycle is a cylical permutation of that

of c.

OBSERVATION 2.2. A history ¢ € C ~*is possible iff one of the following
two conditions holds:
(i) ¢ is cyclical;
(i) For all k = 0, ¢ ~** is not cyclical.

These observations show that our very definitions of strategies already
entail some assumptions. These assumptions deserve comment. Let us
first consider the definition of a DM strategy. In the bulk of literature in
dynamic programming and repeated games, the decision maker’s strategy
is also defined as a function from histories to actions. However, in the
case of finite histories, this definition constitutes no loss of generality:
finite histories differ in their length. Hence, a strategy which depends only
on the history also implicitly depends on *‘time,’” i.e., the stage at which
the process is in. In our case, on the other hand, the same definition of
a strategy does not allow the DM’s choices to depend on ‘‘time,”’ or on
some ‘‘external clock.”” The ‘*clock,’” that is, the specific enumeration
of stages from —x to = is only known to the outside observer and, indeed,
this enumeration may be shifted by any integer without changing the
model.

This implicit *‘no clock’” assumption may also be represented as follows:
we assume that all those circumstances relevant to the DM’s choice are
described in A and S. That is to say, the decision maker in this model is
not allowed to deviate from a certain behavior pattern ‘‘just because”
time has passed. In fact, given any model with a “‘clock,” one may
construct an equivalent model without a ‘‘clock™ by incorporating the
state of the clock into the state of nature. If the original model’s clock
had infinitely many states, e.g., all integers, then § would not be finite.
However, no problem would arise for finite-state clocks. (Consider, for
instance, a good old-fashioned clock showing only the time of day but
not the date, and so forth.)

Since our main motivation is to study some notions of ‘‘stage =,” the
no-clock assumption can also be explained by stating that at ‘*stage infin-
ity’’ there is no ‘‘sense of time’’; put differently, = + 1 = =,
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Let us now turn to nature’s strategy. The only mathematical difference
between nature and the DM is assumed to be that nature’s choices do not
depend on those of the DM (while the converse is, of course, false).
Though philosophically questionable, this assumption seems to be a rea-
sonable one for practical purposes. As regards the descriptive aspects of
the model, it should also be noted that in many cases of interest even if
this assumption fails to hold, it does describe the way the decision maker
perceives the problem. For instance, weather conditions are known to be
affected by people’s actions; nevertheless, people tend not to take these
effects into consideration while facing a decision problem. Moreover,
neglecting these effects appears to give a rather good approximation to
the real problem, especially if computability and complexity constraints
are considered.

The fact that nature’s strategy is also defined as a function of history
alone (without dependence on a ‘‘clock’’) has a similar meaning to the
corresponding definition of the DM’s strategy. The assumption may seem
to restrictive, since it concerns nature for which *‘bounded rationality’’
arguments do not seem to apply (as opposed to a human being). However,
this assumption is equivalent to the following: if the states of nature have
been alternating in a given cycle from days of yore until today, we assume
that the same pattern will persist. If no cvcle has been followed throughout
history, this assumption is trivially satisfied.

3. RECURSIVE STRATEGIES

We now turn to impose bounded rationality assumptions on the strate-
gies. The main assumption we will use is that these strategies are recursive,
i.e., that there exist algorithms which can compute the next action of the
DM and the next state of nature given the infinite history. Before we turn
to discuss these assumptions, let us first specify the computational model
we use.

Our model is basically a standard Turing machine with an assignment
of an action in A (or state in .S) to each final state (an internal state at
which the computation may terminate). We assume that the input tape
always contains an infinitely-long input string. It seems more convenient
to think of two tapes—the (read only) input tape and the working tape
{which is always empty at the beginning of the computation). For the sake
of brevity, we omit the formal definition of such a machine. However, it
is a straightforward adaptation of the standard one. (See, e.g., Hopcroft
and Ullman (1979).)

We also assume that the Turing machines describing the relevant strate-
gies are such that always halt for every conceivable input. By ‘‘conceiv-
able’” we mean that any history ¢ € C ~* and its projection s(¢) should
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be considered as potential inputs to the DM’s and nature’s machines,
respectively. It should be emphasized that it does not suffice to assume
that the machines halt for every history consistent with them. For some
cases, especially where the DM considers a change of strategy, we would
like the future to be well-defined for any history and any pair of strate-
gies.

Let us then denote by 39 the subset of the set of all DM’s strategies ¥
which are implementable by a Turing machine which always halts. Let
®° denote the corresponding subset of ©.

For the DM’s strategies, the restriction of allowable classes to X0 seems
almost innocuous, or, at least, a very weak assumption of bounded ratio-
nality. It only states that the DM’s strategy can be unambiguously defined
by a finite number of instructions. However, the corresponding assump-
tion imposed on nature may seem unjustified. In fact, it is equivalent to
the hypothesis that there exists a (finite) ‘‘scientific’’ theory which is
“‘true’’ in the sense of perfectly predicting nature’s choice. The philosophi-
cal grounds of such an hypothesis are beyond the scope of this paper.
(See Gilboa (1990).) Nonetheless, we will not adhere to the deterministic
model for very long. Once we allow for randomized choices this assump-
tion would only mean that the distribution over states of nature, rather
than the specific choice of one of them, is describable by a finite algorithm.
It seems to us that such an assumption is not too restrictive for many
cases of interest. (Consider, for instance, the concept of a Markov chain:
there are several states, to each of which there corresponds a distribution
over the set of states, and that distribution may be computed by an algo-
rithm given the history.)

In the literature of repeated games there are several notions of bounded
rationality. The most restrictive assumption seems to be that of finite
recall. In our terms, o € % (6 € 0) is said to be a finite recall strategy
if there exists a number n = 0 and a function f: C" — A (f: s(C") — 3)
such that o(c) = f(c ") (8(s(¢)) = f(s(¢c "M forallc € C ™

A simple but somewhat surprising result is

PrROPOSITION 3.1. The set of finite recall strategies in X (@) is exactly
30@9%).

Proof. The fact that every finite recall strategy is recursive is trivial.
The converse is an application of Koenig’s lemma and may be proved as
follows: let o € 3°. (The proof for 8° is symmetric.) Consider the infinite
tree, (V, E), which describes the conceivable histories:

V={c"ceC * n=0}

E={c ¢ " NNceC ™, n=0}
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That is, the vertices are all finite sequences of circumstances (¢_,,;, ...,
¢,) including the empty sequence ¢ which is the root of the tree, and two
such histories are connected by an edge if and only if the first one may
be obtained from the second by deleting the first component of the latter.

For a given o € 2% and a given history ¢ € C ~*, one may consider the
path in this tree along which the computation of o will proceed, that is,
the subset of finite sequences o may ‘‘observe’ at various points of the
computation. Note that all these are suffixes of ¢ and therefore generate
a path. Since o is required to halt, this is simply a finite path generated
by ¢ “for 0 < i = k for some k. To prove that ¢ is a finite recall strategy,
we only need to show that the length of this path, %, is bounded from
above for all conceivable histories ¢. Assume the contrary, i.e., that such
a bound does not exist. Consider the root of the tree ¢, and the finite
number of branches emanating from it. If in each branch the computation
paths of o were bounded, the maximal bound plus 1 would have been a
bound for all conceivable histories. Hence there exists as least one branch
(subtree) for which there is no such bound. Continuing in this fashion one
obtains a conceivabie history ¢ for which the computation of o does not
halt. =

OBSERVATION 3.2. Suppose o € 20 and 8 € O° are consistent with
the history ¢ € C . Then ¢ is cyclical.

Proof. In view of Result 3.1, both o and 8 are finite-recall strategies.
Assume a(c) depends only on ¢ % and 6(s(c)) on s(c %), and let k¥ =
max{k,, k,}. It is trivial to see that ¢ is cyclical of order m < |C|*. =

The last two results show that our model is too restrictive, since it can
only describe cyclical phenomena. We are now going to generalize it in
two ways by introducing (i) machines with memory and (ii) randomized
actions. However, the main two assumptions, that of time stationarity
and that of bounded rationality, will essentially be retained.

4. RANDOMIZED ACTIONS

As mentioned in Section 3, the assumption that nature has a recursive
strategy (with the ‘‘no clock’ assumption) seems far too restrictive to
describe uncertainty. On the other hand, we would not like to drop this
assumption altogether since we are interested in modeling situations in
which there is something the decision maker may infer from the past
regarding the future.

The most natural thing to do at this point seems to be to allow random-
ized actions (at least for nature), and to require that the assumptions
discussed above be satisfied with respect to these, rather than the actual
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actions (or states of the world) chosen. Thus, no conceivable history will
be ruled out and, in particular, the model will not be restricted to cyclical
phenomena—but there will still be enough regularity for the DM to apply
statistical inference techniques.

Let A(A) and A(S) denote the set of distributions over A and §, respec-
tively, and define 3* = {o: C ™" — A(A)}; O* = {8: 5(C ™) — A(S)}. As
in the deterministic model, these definitions already impose the ‘‘time
stationarity’” or ‘‘no clock’ assumptions. In order to formulate the
bounded rationality assumption we wiil define Turing machines as before,
save that now a distribution over A (or S) will be attached to each final
internal state of the machine rather than a single element of it. Note that
these distibutions may involve irrational numbers, since these probabilities
are not assumed to be computed by the machine. This modeling assump-
tion is consistent with our general application of the Turing machine
model: we only use it to bound the strategic complexity of a strategy.
The complexity of tossing a ‘‘coin’ with probability V2/2 of **head”
seems to us to be a technical, rather than a substantial difficulty. In other
words, the idealized Turing machine we use tries to capture faithfully
the way people make decisions. While people cannot follow strategic
arguments beyond a certain complexity level, we do not seem to be
befuddled by a (V2/2; 1 — V2/2) randomization, as opposed to the (.7,
.3} one. Obviously, actual decisions will not typically follow irrational
probabilities. But imposing their computation on the same machine would
confound two types of complexity, only one of which seems to be of
significance.

(Alternatively, one may assume that each terminal state of our machine
sets into motion a separate, auxiliary machine, whose role is to compute
an action with approximated probabilities. This is tantamount to having
one ‘‘large’’ machine with two types of states, only one of which is
counted in complexity measures such as the number of states and length
of computation.)

S. MACHINES WITH MEMORY

Resuit 3.1 may suggest that recursive strategies are too restrictive. In
fact, they cannot implement reasonably simple strategies. Consider the
following example: nature chooses whether it will rain or not. The DM
chooses to take an umbrella or not. A possible DM strategy is the following
**2-trigger strategy’": if it never rained before, or if it rained exactly once
in the entire history, do not take an umbrelia. Otherwise, take an umbrella.
This strategy is certainly not a finite recall strategy. Hence, it is not
recursive. However, such a strategy is implementable by a finite automa-
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ton playing a repeated game as in Aumann (1981), Rubinstein (1986),
Neyman (1985), Kalai and Stanford (1985), and others. (These models
assume that histories are finite, but the extension of the automaton notion
to infinite histories is straightforward.)

This apparently paradoxical result, namely that a Turing machine is
weaker than a finite automaton, is due to an abuse of terms: when a finite
automaton is said to “‘implement’ a strategy in a repeated game, it is
meant that each stage of the game corresponds to one application of
the automaton’s transition function. When a Turing machine is said to
“‘compute’’ a strategy, the role of the machine’s internal states is quite
different: they are used for a “*background’’ computation, and only when
the whole computation is completed is an action chosen and one single
stage of the game is over. In other words, the automaton may use its
states to “‘remember’’ information from one stage to the next. The Turing
machine uses its states for the computation alone, and at each stage it is
assumed to begin at the same state. Thus it cannot carry information bits
computed in previous stages to the next one. In the context of finite
histories, this lack of memory on the Turing machine’s part constitutes
no loss of generality: the machine can always simulate its computations
in the previous stages. (This is, of course, only true if computability rather
than complexity aspects are taken into account.) However, in the case of
infinite histories this is no longer the case. It therefore seems natural to
consider a larger set of machines which have another “‘memory’ tape
which may be written to and read from during a computation. This tape
is kept unaltered between the end of one computation and the beginning
of the next.

We would therefore like to endow a DM’s machine with memory, and
it would seem suitable to allow it to remember real numbers such as relative
frequencies. However, if we do not impose any additional restrictions and
consider a Turing machine with real-valued registers on which arithmetic
operations and comparisons can be performed, we make it significantly
stronger than we originally suggested: such a machine can use a real
number as a code and analyze it to determine its behavior. Thus, a very
simple machine may actually implement a nonrecursive strategy. This is
obviously not what we had in mind. However, if we limit the memory to
a finite number of cells (each of which may contain one of a finite set of
symbols) we may be unduly restricting the machine’s ability to compute
numbers in a naive way.

We therefore have to distinguish between the memory the machine has
for numbers per se and numbers as encoding of information. We were
unable to find an elegant computational model which will draw this distinc-
tion by its computational abilities. Rather, we suggest adopting a Turing
machine with several real-valued registers, but restricting its complexity.
That is, each computation performed by the machine may use the registers
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up to T times for some fixed 7 (which will be a part of the machine’s
specifications).

We therefore define an m-T-Turing machine (for m, T = 0) as a machine
with m real-valued registers such that each computation may involve no
more than T register-accesses, each of which may be an arithmetical
operation (+, —, X, /) or a comparison (=, #, >, =, <, <).

More specifically, the transition function of such a machine may depend
not only on the “‘current’’ state and the literal read on the tape, but also
on an arithmetical comparison of the type: ‘‘Is the number in register §
greater than that in register 177"’ Similarly, the transition function may
specify, on top of the next state, the literal to be written on the tape and
the ‘*head”” movement—also an arithmetic operation such as ‘‘add the
content of register 2 to that of register 5 and put the result in register 11.”
An instantaneous description of such a machine includes the (real-valued)
content of all its registers, and a ‘‘computation’ or a ‘‘run’’ is a sequence
of instantaneous descriptions, where each one of these follows from its
predecessor according to the intended meaning of the arithmetic opera-
tions and comparisons. The formal definition of such a machine, a compu-
tation of it, and so forth, are omitted. They are straightforward adaptations
of the classical definitions. (See also Preparata and Shamos (1985), pp.
28-29.)

A few words on this computational model may be in place here. As in
Section 4 above, we make here an assumption of an idealized Turing
machine which has various *‘black boxes.’’ These black boxes perform the
most astonishing computational tasks in no time, and one may obviously
wonder how they “‘really’” are done.

But this question is close to irrelevant for our purposes. The metaphor
of a Turing machine should not obscure the modeling target. It is not an
actual computational device, nor the theoretical construct that we attempt
to study. The Turing machines used in our model are supposed to be
abstracted, simplified representations of human decision makers. They
should be judged on the basis of their psychological plausibility rather
than actual accuracy. Thus, we employ the machine metaphor when it
seems to be an appropriate measure of strategic complexity, but discard
it when it introduces other complexity considerations which we find of
little relevance. In short, we are not committed to Turing machines or
any other modeling tool. We simply attempt to find a model that would
best reflect important features of reality, while neglecting the less import-
ant ones.

We may now turn to some relevant properties of m-7-Turing machines.

OBSERVATION 5.1. Suppose M is a m-T-Turing machine which com-
putes an action a € A (or a € A(A)) for every possible history and for
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every set of initial values in its registers. Then there exists a constant
k(M) such that for every history ¢ € C ~*, M does not consult ¢ ~*M*,

Proof. Similar to that of Proposition 3.1. =

Therefore, we can conclude again that, apart from the memory the
machine carries, it is still a bounded recall machine. However, such ma-
chines can already learn a stochastic process. That is, suppose that Na-
ture’s strategy is a finite recall mixed strategy 8 € @*. Assume that ¢
depends only on the last & stages, and that 1: A X § — R is the DM’s
payoff function. (Notice that we do not allow nature’s strategy to have
memory as well. This should be interpreted as a bounded rationality
assumption: the DM will be optimizing only against **simple’” phenomena.)
For every history ¢ we consider

r
Sup(rEE* llm infT—;x I/T }: E(h(.f;((_y a, 6)))3
1=

1

where f is the future function defined in Section 2 above.

A strategy o is (e-) optimal against 6 if it (¢-) obtains this payoff for all
¢. An m-T-Turing machine is {(&-) optimal against 6 if for every set of initial
values assigned to its registers {x;}”.,, the induced strategy Ty 1 (&)
optimal against 6.

The fact that payoff measurement ‘‘begins’” at a given (infinite) history
¢ poses a problem since it may implicitly introduce a *‘clock’’: one may
design a machine which uses a certain register as a *‘timer’": if it is positive,
it is increased by 1, and otherwise it is set to 1. Thus, for every history
and every set of register-values {x;}~,, such a machine may practically
decide to start ‘‘counting’’ at that point. We find this to contradict our
notion of an infinite history, since the point of time at which we decide
to start the computation of the payoff is arbitrary, and the machine’s
computation should not depend on it.

We therefore define an m-7-Turing machine M, to be 8-consistent (for
6 € 0) if there is an infinite history ¢ and a history of register values
{x;7"} ;> such that for every t = 1, beginning with history ¢ ~"* and the
register values {x;/‘}L,, M, and 6 could generate the continuation ¢ ~'
and the register values with positive probability.

Notice that the type of machines described above is not @-consistent
for any 8 € @*: the history of the counter registers should be of the form
(...,0,0,0, 1, 2, 3, ...) which is incompatible with the definition of
#-consistency. Intuitively, a (#-)consistent machine cannot ‘‘decide’’ to
start counting at an arbitrary point. Put differently, if it never started
counting up to a given point, it will never start thereafter as well. (In the
example above, it would never generate a sequence of zeros.)
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The following two results guarantee the existence of e-optimal and
optimal (#-)consistent machines against ‘‘simple’’ nature phenomena, that
1s, strategies 6 with finite recall. We will show that, for every given recall
length, there is a machine which is (e-)optimal against any phenomenon
whose recall does not exceed the given bound.

Both results are standard in case of a finite history, and are based on
statistical estimation of 6. e-optimality may be obtained by a long enough
sample, and optimality by an ever-increasing sample size. However, infi-
nite histories pose two problems: (i) How does one update statistics gath-
ered over infinitely many periods? (ii) How can a (8-)consistent machine
which has no *‘clock’ increase its sample size?

The answers are given in the following results.

LEMMA 5.2. Given nonempty and finite sets A, S, a payaff function
h: A x §— R, an integer k = 0 and & > 0, there exists an m-T-Turing
machine M with k(M) = k which is 9-consistent for and e-optimal against
every § € O* with recall k.

Remark. Notice that the DM implicitly assumes that nature does not
use more recall than he/she does. Again, this is a bounded rationality
assumption: knowing very little on what nature ‘‘really’’ is, the DM does
his/her best.

Proof. As explained above, all M needs to do is to compute the relative
frequency of each state of Nature s after each k-suffix of a history s €
(S)*. For each s that § may generate with a positive probability, the
relative frequency of each s € S will approximate its true (6) probability
of following s with a high probability. Thus, |S|**! registers are all that is
needed for s-optimality. The problem is how to compute the relative
frequencies given an infinite history and one additional observation. The
idea of the solution is the following: the machine will have to keep and
respond to statistics gathered over finitely many periods, where their
minimal number is determined by the desired level of (¢-)optimality. In
order to guarantee that at each point of time the machine has a long enough
history, it would actually have two sets of registers. Each one would
update statistics for many periods, then ‘*forget’ its data and start anew
(from scratch). However, if the two cycles are appropriately synchronized,
when one of registers ‘‘forgets’” all it knows, the other still has enough
memory and will also keep it for a while. Thus, the machine may play
e-optimally at any given point of time, yet ‘‘learn’’ any nature strategy
6.

Formally, let &, > 0 be given, and let N = |S|*/e}. It follows from
Markov’s inequality that if X, X,, ..., X, are i.i.d. random variables,
each of which is distributed over S, and p € A(S) is their expectation,
then



384 GILBOA AND SCHMEIDLER

P (H(l/n)iX, _—
i=1

IZSI) <g,foralln =N,

(where ||| is the Euclidean norm). Construct a machine M with
2 x (S + IS5 + 10 registers as follows. At any point of time, for
each history suffix s of length k and for each state of nature s,, the machine
would have two relative frequencies for the occurrence of s, after s: one
obtained over the last N, occurrences of s and the other over N; + N
last occurrences, for some N, with 0 = N, < N — 1. (Thus, for each s
and in each of the two sets of registers it has |S| registers for the distribution
over S and one for the counter.) At each stage the machine uses the
statistics obtained over the longer history for choosing a best response
action, and updates both relative frequencies of the corresponding s €
(S)*. Correspondingly, it advances the counters of that s, say Ny and N,
+ N, by 1. When Ny + N = 2N, the machine sets N, to zero and ignores
the relative frequencies obtained over the longer history. (That is, it clears
the corresponding registers.) The ten additional registers are used to retain
the constants N, I, 0, as well as for auxiliary computations.

Thus, at each stage the machine has a relative frequency which is g,-
close to the true Nature strategy, and it chooses a best response act versus
the approximated distribution.

Obviously, for small enough ¢, i.e., for large enough N, the machine
obtains an g-optimal payoff. Finally, note that, due to its cyclical nature,
this machine is also #-consistent. =

s

We now strengthen the previous lemma by ‘‘dropping the &.’

THEOREM 5.3. Given nonempty and finite A, S, a payoff function h:
A X S — Rand an integer k = 0, there exists an m-T-Turing machine
M with k(M) = k which is 8-consistent for and optimal against every 6
with recall k.

Proof. We first observe that the recall length and the number of regis-
ters of the machine constructed in 5.2 above is independent of e. That is,
e determines the length of sample size N, but the same m registers will
be used the same number (= T) of times for all € > 0. This fact raises
the obvious solution of increasing the sample size: N is stored in one of
these registers which, whenever a cycle is completed (i.e., when N, =
N), is incremented by [ (or, say, multiplied by 2).

Thus, the machine would play ¢,-optimally for a sequence €,— 0, and
(by the liminf criterion) also optimally.

But this suggested construction does not seem to satisfy the consistency
condition: if the machine increases N, its history will contain some “‘start-
ing point’’ at which N is zero. How would the machine have known it
was then time to start counting?
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The solution is quite straightforward. Let the counter N have any integer
value, including negative values. The sample size the machine actually
uses will be |N|, and whenever Ny = |[N|, N is increased by 1. Thus, the
precision of the statistics is increasing in both time directions. Intuitively
speaking, such a machine learned 0 precisely in the past, has since forgot-
ten it, and is in the process of learning it again. Obviously, for every given
history and every set of register-values, N will eventually become positive
and the machine’s play will be closer and closer to optimality. With the
liminf criterion, optimality is guaranteed.

Formally, construct a machine that is identical to that described in 5.2,
with an additional register for the value of [N]. This is the register to which
N, is compared during the cycle. If N, = |N|, N (which may be negative)
is incremented by 1, and |N| is computed again. The rest of the algorithm
is unaltered.

Notice that this machine will be #-consistent for every . m

6. STEADY ORBITS IN GAMES

Consider a one-shot finite normal form game G = (N, ($),en(h);en)
where N = {1, 2, ..., n} (n = 1) is the set of players, S'is a (finite and
nonempty) set of moves of player i, and h': § — R is player i's payoff’
function where S = Il,cy S°.

We would like to define a solution concept for one-shot games which
would rely on the implicit assumptions that G is an infinitely repeated
game with infinite history and that each player considers all other players
(in conjunction) as Nature. For brevity's sake we will not provide formal
definitions of the repeated game and its strategies. These definitions are
straightforward adaptations of the ones given above. However, bearing
this interpretation in mind and applying the previous sections’ results we
know that a recursive strategy with a bounded number of memory registers
is, in fact, a bounded recall strategy (with the same number of memory
registers). Let k; = 0 denote player i’s recall, i.e., the number of periods
player i remembers. Thus our solution concept will be defined for a given
one-shot game G and a given recall profile {k;},cy -

By the previous section’s results we know that, if a player / believes
he/she faces a nature phenomenon with recall k;, he/she has an optimal
“statistical”’ strategy (implementable by an m-7-Turing machine). We
therefore assume that each player will choose such a strategy, as if he/she
were implicitly assuming—for lack of better workable hypothesis—that
nature does not use more than k; recall stages. Of course, m-T-machines
may implement a variety of other bounded-recall strategies. However,
we assume that the players are ‘‘rational’’ enough to optimize given their
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beliefs. (As in most game-theoretic models, the rationality assumption
and the players’ choices will not be formally modeled. Rather, they will
be implicit in the definition of the solution concept.)
Our focus will be on the limit frequency of each s € § during a play of
the game by such players as well as on the corresponding average payoffs.
We first define the set of player /’s (mixed) strategies to be

3= {gi (§)ki—> ASH}.

Given the recall bounds {k;}n we define & = max; k;. We will be
interested in states which are the |S|* &-tuples of one-shot plays; those
summarize the relevant information of the history.

Some notational conventions which will prove useful are the following.
For a set X (such as S%, S, etc.) and x € X™, say x = (x;, X5, ..., X)),
we define suf(x, I) (1 =/ = m) as the element of X' defined by (x,,_,,,,
Xp_ir2s - -5 X%,). Likewise, pref(x, [} will denote (x,, x5, ..., x}) € X'
Forx = (x;, ...,x,) EX"andy = (v, ..., y) € X' we define x-y to
be the element (x, ..., X, ¥, ..., ¥y) € X"\

We also define 2 = [Icy 2/ and a typical element ¢ € ¥ will be
understood to define o’ € 3/ (for all i) such that ¢ = (¢!, %, ..., "),
For i € N we define s ‘(o ~') to be an element of § /=11, §/ (X ' =
I1,.; 2/), the symbol (s ~*)’ (o =')/) will stand for player j’s component in
s (o ~%). The symbols (s ~*, ') and (o ~/, 77) would be elements of § and
3., respectively, with the obvious meaning.

Given o € 2. we define a Markov chain whose set of states is ()% with
the transition probability matrix A(o) defined by the elements:

ey o'(suf(s, k)((sp)Y),  ifsuf(s,k — 1) = pref(s’, k — 1)
0, otherwise.

afo), , = {

In other words, a(o),, is the conditional probability that the play of
the game will have a history (of length k) s’ at time ¢, given that at time
(¢t — 1) it has a history s and the players are playing according to o.

The probabilities in A(g) describe all the relevant informtion about the
play of the game given a certain history. However, as explained below,
we also have to introduce the stationary distribution as a part of the
definition of a steady orbit.

Let there be given p € A((S)*) and o € X. We define a function 7(p,
a): ()% — A(S ), which should be interpreted as the list of values of
the statistics player / retains in his/her machine registers. More specifi-
cally, should the players choose o, and if the game has been played
according to the stationary distribution p on (S)*, for a given s € (§)%
7i(p, o) (s) is a distribution on § ~'. For each (n — 1)-tuple of the other
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players’ moves sy € S 7/, 7/(p, o)(s )5, ") is the relative frequency with
which s, followed s. Given player i's recall, k;, the distribution (p,
o )(s) reflects player i’s belief about what the environment will be in the
next stage, and this is the distribution { will be choosing a best response
to.

In case alf players have identical recall (k; = k), 7(p, o)(s) will also
be a correct prediction, namely, the actual distribution on the next (n —
1)-tuple of the other players’ moves. In particular, it is determined by what
the players play—namely, o—and the current state s, and independent of
the stationary distribution p. More specifically, if &, = £,

7i(p, o)s)sg ) = [T (s )(sq));

J*i

i

that is, the probability of the next (n — 1)-tuple of moves to be s; ' is
simply the product of the probabilities that each of the other players will
play his/her part.

However, in case player i has k; < k, he/she can only observe the last
k; states of a k-long history. Correspondingly, the statistics player {’s
machine retains can only be for (5)%. Given s € ($)%, however, there are
(|S)* % k-long histores s’ € (S)* which give rise to it. Therefore, the
distribution 7(p, o)(s) is a weighted average of the actual distributions
corresponding to the relevant k-long histories s’, where the stationary
distribution p determines the weights. The general definition of 77(p, o)
1s, therefore

T(p,o)s)syd = > PG ol (suf(s s kN6 HY)

yEs) ok J#

where

P(s)=p(s'"s)/ 2 plt's)

reE)<h

if the denominator does not vanish. In case it does, i.e., p(t'-s) = 0 for
all ' € (5)*~%, the definition of 7' is immaterial.

Given a distribution on the other players’ moves g~/ € A(s %), and a
mixed move for player i, g € A(S"), we say that ¢’ is a best response 10
g ~'if it maximizes E(h') given g ~".

At last we can define a steady orbit of the game G with recall profile
{k;}; to be a pair (p, o) such that:

(i) [A(o)l'p = p (where ‘t”’ indicates transpose);
(i) ViE N, Vs €(S)4 ai(s) is a best response to 7/(p, o)s).
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The first condition states that p is indeed a stationary distribution for
the Markov chain defined by A(o). The second condition simply requires
that all players will choose a best response (mixed) move, given their
information, while their information is consistent with the stationary distri-
bution p and all players’ strategies.

It is important to note that the interpretation we suggest for this concept
does not assume that the players are aware of the stationary distribution
p, or even of the other players’ recall bounds {k;};, let alone other players’
strategies. Each player gathers information and computes relative frequen-
cies to the best of his/her ability, without knowing whether his/her
bounded recall is large enough or not. If the players choose a certain
strategy o, an outside observer could define the resulting Markov chain
and compute the stationary distribution. Should such an observer compute
7i(p, o) as defined above, (s)he would find that it coincides with the
statistics computed by player /, but this computation of {r} via p and o
cannot be done by the players themselves.

The first question which arises at this point seems to be existence. And
indeed, a rather standard fixed-point argument ensures that the following
holds:

THEOREM 6.1. Given a one-shot game G = (N, (§)en, (h)ien)
and k; = 0 for i € N, G has a steady orbit (p, o) with recall profile

{ki}iEN ‘

Proof. Let B = A((S)*) x IL A(SH%™, Note that each element b €
B can be interpreted as a pair (p, o) where p € A((S)*) and o is an n-tuple
of strategies. Furthermore, B is a convex and compact subset of R™ for
some m (= |S[* + Zi_, IS[4IS9). Let f: B— 25 be the following correspon-
dence: for (p, o) € B, f((p, o)) is the set of all pairs (p', o) such that:
() p' = [A(@)]'p, and (ii) (’)' is a best response strategy to 7i(p, o).
(That is, the first component of all points in f(p, o) is the same p'.) Note
that f is convex valued and upper semicontinuous. Hence, it has a fixed
point by Kakutani’s theorem. =

Given a stationary distribution p € A((5)*) we define p to be the induced
distribution on S, i.e., p(s) = 2 g -t pls’-s). We will also define H(p),
fori € N, to be 2,c; p(s)hi(s) and h(p) will denote the vector of expected
payoffs (h(p));cn. With a convenient abuse of notation, we will also use
hi(p) and h(p) for p € A((S)¥) referring to A'(p) and h(p), respectively.

We will be interested in

SOk, ... k) = {h(f’)l (p, o) is a steady orbit of G with recall}

profile {k;};cy for some o € %,
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and

SO = U(kl,”,km)E(Z*)" SO(kl, ey kn)

withZ* ={0, 1,2, ...}

Let us denote by NE (CE) the set of Nash (correlated) equilibria payoffs
(see Nash (1951) and Aumann (1974)). We will now state and prove some
results regarding the relationships between the set of steady orbit payoffs
and Nash/correlated equilibria payoffs. All these results hold for any given
one-shot game G = (N, (S),en, (B)ien)-

ProposiTION 6.2. Forall k, ..., k,,
NE C SOk, ..., k,).
Furthermore, NE = SO(0, ..., 0), hence NE = N ez SOk,
cees k).
Proof. Given k,, ..., k, and a Nash equilibrium of G, define o to be

the n-tuple of strategies which play the given equilibrium regardless of
the history. Let p be some stationary distribution of A(c) and note that
(p, o) is a SO of G with {k;},cn -

For the ‘‘furthermore’’ part, let ks, = 0 for i € N, and assume (p, o)
is a steady orbit of G with (k,, ..., k,). Note that o' is no more than
a mixed move in G (since there is only one zero-length history) and
correspondingly, the Markov chain has only one state. The best response
condition implies that o inducesa NEin G. »

PROPOSITION 6.3. Co (NE) C SO. (Co stands for convex hull, and the
bar for closure in the standard topology.)

Proof. Let there be given m Nash equilibria of G denoted oNE; =
(r)i, (i = j = m), where r{ € A(S'). We will denote by NE; the payoff
vector A(TI; ri) (where TI;r} is the product distribution on § defined by the
distributions rj"» on S9). It suffices to show that all rational convex com-
binations of {NE;}", are in SO. Let there be given, then, positive inte-
gers {t;}/1, with T = X7, 1;. We would like to show that X7%, (t;/T)NE;
€ 50.

Let us first explain the main idea of the proof. The obvious way to
obtain the desired average payoff is to let all players have identical recall
k and play one of the Nash equilibria each stage. Since all players would
observe the same history, each one will know the exact mixed move of
every other player and the strategies will be best-response ones.

Let us first consider the case in which all the Nash equilibria are
pure. In this case it suffices to set k = T and let the players play
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oNE; t; times (j = 1, ..., m) in a cycle. However, the same technique
cannot be directly applied to mixed equilibria since the history (i.e.,
the actual realizations) does not identify the Nash equilibria that were
played, and one cannot uniquely define the next equilibrium which
should now be played.

We note here that the difficulty could be avoided if one assumes that
each player remembers his/her own mixed actions. In this case the proof
is identical to the pure Nash equilibria case. However, one need not
deviate from our framework in order to obtain the resuit, and we therefore
stick to it.

The main idea, which is not very surprising, will be the following:
instead of a single play of an equilibrium (which does not identify it) we
should have a long sequence of plays, which will identify it with high
enough probability.

Thus, a history in which each equilibrium was played long enough
according to a certain cycle is likely to regenerate a similar history. We
should also verify that histories that do not correspond to the desired
cycle will not have too high a (stationary distribution) probability; we can
guarantee that by deciding that the players would play an arbitrarily chosen
oNE, say oNE,, at those histories.

The formal proof is, naturally, slightly more delicate: let there be given
{oNE;}IL, (without loss of generality, NE; # NE, for i # j), {}/L, and
1> g, >0, withT = 27, 1.

Let us define

d = miniéi#jsm “NE«‘ - NEj” >0,

(where |- || stands for the Euclidean norm).

Without loss of generality we will assume that for every s € S,
Ja(s) < 3, hence also for every s, s' & S [h(s) — h(s')| = 1. For x €
A(S) and £ > 0 denote N (x) = {y € AS)| |Ix — y| < &}.

Let M be an integer satisfying M > 3/d. For suchan M, if x,, x,, ...,
Xy € AS)Y and A(x)), A(xy), ..., A(xy_ ) € Ny (NE;), then

M
UMY hix;) & Ny (NE)  fori#j.
i=1

Next, let &, = g/3m(m — 1) and choose L to be an integer such that
L > 1/e,.

Let K, be a large enough integer such that for all & = K and every
1 =j = m,if oNE;is played k times, forming a sequence X;, X,, ..., X;
of i.i.d. random variables on 2(A(S)), then
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k
Prob(|(1/k) > X; — NE|| < di3)> (1 — g,)VMLT+D,
i=1

A “‘long sequence’’ of a certain equilibrium will be of length K ML,
and thus we define the recall length to be & = K,ML(T + 1). For each
player i € N, then, k; = k.

We need some additional definitions: a sequence s € (S)"Xo is an M-j-
sequence if

Ky
(1/Kg) 2, hlsy ) € No(NEy),  forallg=0,1,...,M — 1,
r=1

(Here and in the sequel we do not distinguish between an element of
S and its corresponding element of A(S).)
It is helpful to note at this point that

Cramm. If s € (5)™X is a concatenation of two M-j-sequences, it
cannot contain a subsequence which is an M-i-sequence for i # j.

Proof of Claim. To see this, suppose that (s;, ..., syx) and
(Smrgr1s - S:qu) are M-j-sequences and that (s,, ..., s,+MK0_,) is an
M-i-sequence for some | = r < MK,. Let 0 =] < M be such that IK, <
r<{ + 1K,. Then:

r+MKy—1

(IMKy) 3, h(s) = (/M)

¢+ DKy-1 r+MKy—1 M1 (U+v+HKy—1
[(1/1(0)( > A+ D h(s,))+2l (VKy) h(s,)].

=r r={+M)K, 1=+ v)Ky

By the definition of M-j-sequence, the last (M — 1) terms in the outer
summation (in square brackets) are in N,,(NE;). The first term being
somewhere in A(A(S)), the average of them all cannot be in N ,(NE)), in
contradiction to the assumption that (s,, ..., s, yk,-1) IS an M-i-se-
quence. =

We can now proceed to define longer sequences. A sequence s €
(S)M% is an L-M-j-sequence if it is the concatenation of L M-j-sequences.
We can finally turn to define a ‘‘nice’ history, in which the desired Nash
equilibria seem to have been played according to the correct order. Basi-
cally, it is a sequence of 7 L-M-j-sequences (with the j’s taking the value
i exactly ¢; times), but we have to take into account the following points:
(i) the sequences of different equilibria may have some overlap (our choice
of M and the claim above would guarantee that this overlap is no longer
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than MK, i.e., I/L of an L-M-j-sequence); (ii) the end (most recent part)
of the sequence does not have to belong to any L-M-j-sequence (but rather
to a new one in the process of formation); (iii) the order of the Nash
equilibria in the sequence is

L-M-I-sequence, ..., L-M-[/-sequence, ...,
1, times

L-M-m-sequence, ..., L-M-m-sequence
t, times

in some cyclical permutation.

We therefore define, for 0 < ¢ = T — 1, a history, s € (5)* to be a &-
c-sequence if there are integers 0 < r; < r, < r; < --+ < ry such that for
all 1 = v = T the subsequence (s;_,. ..., Si_, +mrk,~1) 1S an L-M-j-
sequence where j is such that

jzl j
H<v+c(modT)=< Y 1.
=1 {=1

A k-c-sequence for some c is also called a k-sequence.

We can finally define the steady orbit by assigning a Nash equilibrium
to each history s € (§)*. Given such an s, apply the following algorithm:
start at the end, s, (the most recent stage) and, going backward, look for
an L-M-j-sequence for some j. If no such sequence is found, attach o NE,
to 5. Otherwise, assume L-M-j;-sequence s ' is found. Continue the search
from s}, (the MK -th component of s ') backward (in s), this time looking
only for an L-M-j-sequence. If there is none within at most M(L + 1)K,
stages before sk ., play oNE, if ; > 1 and oNE; oq s if 1, = 1.

If, on the other hand, such an L-M-j,-sequence s° was found, continue
with it in the same fashion. For ¢t < t;,. if exactly 7 such sequences are
found, play oNE) . If 1; are found, play oNE; moq my+1 -

We contend that any stationary distribution p of this process induces
a steady orbit as required. First, it is easy to see that for every 5 € (5)%,
if the process is in state s at time ¢, then, by the choice of K|, the probability
of being in a k-sequence at time ¢ + k is at least (1 — ¢,), which means
that the stationary distribution probability of these states is at least (1 —
&,). Furthermore—again, by choice of K,—given any s € (S)* and every
I = j = m, the probability that o NE; will be played at least (t,L — )MK,
times during the next TMLK stages is at least (I — g,).

We now wish to show that the stationary distribution probability of all
states at which oNE; is played (according to our algorithm), denoted
p(oNE)), is at least (t/T — gy/m(m — 1)). This would also mean that it
is at most (;T + &y/m) and then
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ﬂ(lmz t;NE; — h(ﬁ)“ = t(l/DE t;NE;, — >, p(ocNE,)NE;
j=1 j=1 j=1

=

EiE

[t/T — p(oNE)|INE}| < &,.

Let A; be the set of histories 5 € (S)* at which the algorithm above
dictates playing oNE;. Let X, be the random variable associated with the
Markov chain. Then

p(aNE;) = Prob(X; € A)) (forall r)
TMLK,

= (/TMLKy) 2 Prob(X,,;€A))
i=1

TMLK,
= (/TMLKy) > . Prob(X,,; € A\X, = s)p(s)
=1 g5t
TMLK,
= > p(s)(1/TMLK) Y. Prob(X,, € AJX, = 5).
i=1

ses’t

By the previous argument, for each s one can find a set of indices / C
{1, ..., TMLK} such that |I| = (1;L — 1)MK, and that

Prob(X,,, €A, Vi€IlX, =5)=1 - g.
Hence, fori € I
Prob(X,,, € AlX, = s) = 1 — &,
and

P@NE) = 3, p(s) (/TMLK,) 3 Prob(X,., € A X, = 5)

€St

= > p(s) (UTMLK)(,L — DMKl — &)

sES)’
= (/T - I/LTY(1 — &)
=4/T — VLT - 4/T + ¢/LT
>4/T — 3g; = /T — g/m(m — 1),

which completes the proof. =
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Remark 6.4. Notice that, if k, = k for i € N and (p, o) is a steady
orbit, then for every player i and every s € (§)*,

T(p, o)s)se ) = [T o/s)(sq M),

i1

that is, player i believes in the ‘‘true” o’s. The best-response condition
then implies that for every s € (5)*, (0/(s));en is a Nash equilibrium of
the game G. Hence, for all k = 0 SO, &, ..., k) C Co(NE).

Hence, we have proved that

U SO, k, ..., k) = Co(NE).
k=0

PROPOSITION 6.5. Assume that k| = k, = ky = -+ k,,. Then SO (k,,
ky, ..., k) = SOk, ky, ks, ..., k,). (Le., the player with the longest
recall may restrict himself (herself) to strategies which only depend on
histories of length equal to the second-longest recall.)

Proof. Assume (p, o) is a steady orbit with recall profile (k, 45, ...,
k,). Define a steady orbit (p’, o’) for the recall profile (k,, k,, ..., k,) as
follows: fori > 1, 0" = o'. Fori = 1, a''(s) (s € ($)*) is the p-mixture
of o'!(s'-s) (overall s’ € (S)*1~%). Since player 1’s best response strategies
constitute a convex set, o’' is also a best response to all other players’
strategies given s. On the other hand, 7/ for i # 1 has not changed, so
that o' is also a best response strategy. Finally, define p’(s) as
EEE(S)kx“‘: P(E' E) =

COROLLARY 6.6. Forn = 2, §0 = Co(NE).

ProrosiTiON 6.7. SO C CE.

Proof. Given a certain recall profile {£,;}; and a steady orbit (p, o), we
will show that p is a correlated equilibrium. Hence, perforce, h(p) € CE.
For some s € § with p(s) > 0 and i € N, we have to show that s’
is a best response move for player i while the other players are playing
according to

p(,s) *,-
> puTish €S-
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Note that
plishy =" ps-(t7,sY)
sEsH!
= Z Z pls’ )a(o-)(\ RRTaRs)
sesF! et
= Z z Z p(r’ )a(o-)(g'[l s t7s
:E(S) rIE(.S) h€(5
= 2 2 P X PU)a@)y,, st
sesh T e neErh
where
plry= 2, plrr)
res) -k
and

p(r) = p(r>-r)ip(rpor zeroif p(r)) = 0.

By definition of 7/,

Z Z ﬁ(fl)a(o')(fg'[f.§‘(IA'.A')) = ‘Ti(fl)(si)'Ti(P- o))t

sESH e R
whence

puishy= 3 plr)oitr)sHi(p. o))t

rest
and

> opuTishy= 2 plroir)s).

1Tles rEs)h

Combining these equalities, the conditional distribution of player i on
the other players’ moves (the ratio of the last two expressions) is a convex
combination of {r(p, o)r Dl et However, only r, € (S)* for which

’(rl)(s 'y > 0 have a positive coefficient. Note that for such r; the move
s’ has to be a best response to 7(p, o)(r;). Hence s'is also a best response
to the convex combination of these dlsmbuuons. ]
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REMARK 6.8. SO is not necessarily convex.

Proof. Consider the three-person game

Player 11 Player 11
F S F S
F|0.1,0.1,0.1 |10, 0, 10 F|10,10,010,0,0
Player I Player 1
S| 0,10,10 0,0,0 S| 0,0,0 |1,1,1
F S

(Player III chooses the matrix.) For a recall profile (9, 9, 0) (that is, &k, =
k, = 9, k; = 0), the following is a (pure) steady orbit: Players 1 and 11
play § if they have observed (F, F, §) in the last nine periods, and F
otherwise. Player III always plays §.

Thus, the steady orbit play consists of nine (F, F, §) and one (S, S, 5)
repeated cyclically. For Players I and II the strategy is obviously a best
response one. Player 111 observes that the other players play (F, F) with
90 percent frequency and (S, S) otherwise. Hence his/her strategy is also
a best response one. The average payoff vector is (9.1, 9.1, 0.1).

Similarly, (9.1, 0.1, 9.1) and (0.1, 9.1, 9.1) are also in SO (for different
recall profiles). If SO were convex, we would have to conclude that (6.1,
6.1, 6.1) is also in SO. Let us prove that this is impossible. Suppose, then,
that (k;, &, k3) is a recall profile for which there is a steady orbit (p, o)
such that A(p) = (6.1, 6.1, 6.1) and assume, without loss of generality,
that &, = k, = k;. Consider H(s) = h'(s) + hXs) + h’(s) and extend H
linearly to A(S). Note that H(p) = 18.3 and that the only three points
s € § for which H(s) = 183 are (F, F, S), (F, S, F), and (S, F, F). For
those H(s) = 20. The maximal value of H(s) for other points s is 3, hence
pUS, F, F)) + p((F, S, F)) + p((F, F, §)) = 0.9. If ¢ satisfies p((S, F,
F)) < e, then h'(p) = 9 — 10e whence p((S, F, F)) = 0.29. Hence there
must be s € $* such that the probability of (S, F, F) in the next move is
at least 0.29. Suppose that at this node (s) Player Il plays S with probability
p and Player I1l—with probability g. Since k, = &, player I knows these
probabilities. For him/her to play S with positive probability the following
inequality should hold:

(1 —p)Xl —g)=01pg + 10(1 — p)g + 10(1 — gq)p.

Some algebra shows that this is impossible if pg = 0.29.
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(The above inequality means that
209pg + 1 = 11(p + q).

Since pg = 0.29 this means that (p + g) = 7.061/11 = 0.65, for such p,
gmax pg=0.11.) =

Remark 6.9. The above exanl;_)le can also be used to show that SO is
not necessarily convex. Hence SO is strictly included in CE.

7. CONCLUDING REMARKS

7.1. It has been argued that steady orbits, with the unavoidable interpre-
tation of repeated games, are not robust with respect to partitions of the
time periods: the infinitely repeated game may be thought of as an infinite
repetition of k-repetitions of the one-shot game for some k& > 1. In this
case the set of actions will be larger, and so will the set of equilibria
payoffs; in fact, one may get the Folk Theorem.

There is, however, a crucial difference between & = 1 and & > 1: for
k = 11t is reasonable to assume that each player’s action is observed by
the others. The strategy in a repeated game cannot be observed in the
same way.

Admittedly, by the same logic one concludes that steady orbits make
more sense for a one-stage simultaneous move game than for general
extensive form games. At least for this subclass of games, which may
successfully model a wide range of interaction situations, we find steady
orbits to be a viable solution concept.

7.2. The study presented above may be viewed as an attempt to formu-
late the '‘repeated game’’ interpretation of Nash equilibrium in the one
shot game: a possible motivation for this concept (which is quite often
used) is that if the game is repeated, and should a certain play of it be
constantly chosen, this play must be a Nash equilibrium. Indeed, this
intuition is reinforced by our results if all the players have zero memory
length. However, the bounded rationality arguments only imply bounded
(and not necessarily equal) memory lengths. Thus, we have found that a
larger set of payoffs—namely, SO—may be justified on the same grounds.

7.3. In order to distinguish between real numbers as people seem to
perceive them and real numbers as encoding of extremely complicated
strategies we used m-7-Turing machines, having finitely many real-valued
registers, and restricted to use them only a bounded number of times in
each computation. This sufficed for the bounded recall result to hold
{Observation 5.1), and then the behavioral assumption of nonstrategic
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players specified what the players will actually do with their memory
registers.

However, we are not quite happy with the computational model pre-
sented here: while it restricts the complexity of each single computation,
the sequence of moves a player chooses in the repeated game may still
be quite complicated. For instance, a player may decide to encode his/
her opponent’s moves during N periods and then play according to some
function of them (say, ‘‘tit-for-tat’’) for the next N periods. It is easy to
see that this strategy does not require any recall at all, and that only one
register, which is used once in each computation, suffices to implement
it.

A natural way to solve this problem is to allow only finite memory
instead of real-valued registers. Thus, the memory may contain approxi-
mations of real numbers, but cannot be infinitely complex. We rejected this
solution because it does not draw the intended distinction: the precision of
the approximation will also determine the complexity of the strategy.

Another solution may be to simply define a computational model that
can do exactly what we want it to do, namely, update the appropriate
statistics. Of course, this is a very restrictive model.

It is therefore left as an open problem to find a general computational
model that distinguishes between the way people and machines handie
numbers.

7.4. Finally, we note that one may obtain similar results with various
versions of the assumptions: one may use a game with “‘stage 0"’ and
explicitly assume (rather than deduce) bounded recall strategies: one may
use Turing machines with finite memory, and so forth. However, we
find the version presented here the most satisfactory from a conceptual
viewpoint,
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