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Abstract

We adopt a definition of “rationality” as robustness to analysis: a mode of behavior

is rational for a decision maker if she feels comfortable with it once it has been analyzed

and explained to her. With this definition in mind, is it irrational to violate continuity

axioms in one’s stated preferences? Specifically, does it make sense to avoid any positive

probability of a negative outcome, not matter how small? Or, if a decision maker states

such a “zero risk” policy, does she mean what she says? We propose to study this

question axiomatically, asking which modes of behavior correspond to such statements.

The baseline model evaluates a lottery by its expected utility and an extra additive term

that measures the cost of deviating from a “zero risk” choice. A generalized version

allows for multiple sets of principles, where the cost of risking a set of principles is

added to the expected utility of a lottery. Stronger assumptions imply that the cost of

violating a set of principles is additive in the individual costs. We develop a comparative

behavioral analysis that allows to make interpersonal comparisons about the relative

importance of principles.

1 Introduction

According to the standard definition of “rationality” in economics, rational decision makers

are logically omniscient, make decisions according to some classical model – such as von

Neumann and Morgenstern (vNM, 1947) expected utility maximization – and typically

ignore emotions in their (implicit) evaluation of outcomes. We find this definition unhelpful.

First, if there were logically omniscient agents around, we would not have departments of

mathematics or Chess tournaments, and probably would not be making online purchases.

Second, there are situations in which decision makers who violate axioms of presumed-

rationality insist on their choices despite being confronted with their analysis. Finally,
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many decision makers respond to affective payoffs and see no problem with that. In all

these cases, we can dub these decision makers “irrational”, but we cannot use our theories

to change their behavior. A more practical definition of rationality, which we adopt here,

would refer to such decision makers as rational as long as their behavior is robust to its

own analysis.1

In this paper we focus on the rationality of some violations of continuity in decision

making under risk. Expected utility theory (EUT) is continuous in probabilities: strict

preferences between two lotteries are robust to sufficiently small changes in the probabili-

ties defining one of them. Indeed, this is a natural mathematical condition that is satisfied

by many formulas, even if they are not linear in probabilities. However, people and organi-

zations can often state preferences that violate continuity (as we shall see below). Clearly,

such preferences violate EUT. But are they rational according to the definition used here?

Do people who state such preferences really mean what they say? Will they stick to their

stated preferences once they are confronted with the analysis of their implications? Are the

stated violations of continuity rational for them? Consider the following examples.

Example 1. A young couple is shopping for a car seat for their baby. They are on a

tight budget, and realize that they may have to give up on some features that are a matter

of convenience. But they would not compromise on safety. “We will not risk our baby’s life

for a few dollars”, they tell the salesperson. The phrase “risking the baby’s life” seems to

correspond to “choosing a lottery with a positive probability of death”. If we accept this

reading, the verbal description of preferences is at odds with the continuity axiom of EUT.

Specifically, it is a description of preferences that are discontinuous “at zero”, that is, at

p = 0 where p is the probability of the horrendous outcome.

Example 2. The movie Oppenheimer has the following dialog:

Gen. Leslie Groves: “Are you saying that there’s a chance that when we push

that button...we destroy the world?”

J. Robert Oppenheimer: “The chances are near zero.”

Gen. Leslie Groves: “Near zero...”

J. Robert Oppenheimer: “What do you want from theory alone?”

Gen. Leslie Groves: “Zero would be nice.

The historical veracity of the dialog has been questioned.2 Yet, it seems very plausi-

ble for policymakers to treat “some tiny probability” as qualitatively different from “zero

probability”.

1For further discussion of this definition and its variants, see Gilboa (1991, 2009, 2015) and Gilboa,
Maccheroni, Marinacci, Schmeidler (2010).

2See “How Oppenheimer weighed the odds of an atomic bomb test ending Earth” (Washington Post,
July 2023).
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Example 3. In the context of the COVID-19 pandemic, a public health official claims,

“Clearly, human lives come first. We will first minimize the risk of losing human lives and

only then take into account economic considerations.” Thus, the stated policy describes

lexicographic preferences, which are discontinuous in probabilities. Indeed, as pointed out

by Rubinstein (1998), when preferences are defined in a language, rather than represented

by a mathematical function, lexicographic preferences might be rather natural.

An economist who hears the above might say, “I don’t think you really mean what you

say. You state preferences that are easily described in natural language, but if you were to

truly think about what they mean, I bet you would choose otherwise.” In other words, the

economist argues that the stated, discontinuous preferences are irrational in the sense that

the decision makers themselves would like to reconsider them, if they thought about them

carefully enough.

But we could imagine, say, the parents in Example 1 countering, “Continuous or not,

these are our preferences. We’re willing to pay an extra $x to know that we have not put

our child’s life at any risk. Irrespective of the horrific outcome, which might well have

a very low probability, the very fact that we chose to take the risk, while we could have

chosen a zero-risk option, is costly. This cost is borne even if the dreadful outcome does

not materialize.” This justification is based on a moral principle, dictating that they not

put their baby at risk. Alternatively, they might have discontinuity at zero because they

believe that any probability p > 0 of their baby’s death would suffice to deprive them

of their peace of mind, along the lines of the Certainty Effect (Kahneman and Tversky,

1979). They might even be giving in to social pressure, which does not allow them to pick

anything “but the safest”. Whether the reason is moral, psychological, or social, there is a

qualitative difference between choosing (a lottery with) p = 0 and choosing (a lottery with)

p > 0, because these choices have meaning, and meaning may behave discontinuously at

zero probability.

A similar argument can be made in Example 2. Indeed, politicians would generally find

a qualitative difference between policies that do and that do not put the public at some risk

– no matter how small the risk is. At the same time, our continuity-promoting economist

might have a stronger case in Example 3. She might say, “OK, I understand that you attach

a special meaning to zero probability, or to the act of choosing a non-zero probability, to be

precise. But how can you seriously claim that you attach such meaning to each and every

value in [0, 1)? The preferences you describe don’t even have a numerical representation.

I’m highly suspicious you’re just following a slogan and not really thinking about what you

say.”

Note that in some examples discontinuity has to do with the choice (lottery) itself, in

others – with the act of choosing it, and sometimes with both. In Example 1, for instance,

one might argue that zero-risk isn’t quite an option, and car accidents might always occur.

Parents who pretend that this is not the case may be irrational: we could ask them, “Do
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you think that any car seat would drive the probability of the terrible outcome all the

way down to zero?” and many would sadly acknowledge that the answer is in the negative.

Thus, our analysis can force them to admit that their belief in zero-risk was an illusion.

Yet, they can insist that it is still their duty to choose the lowest risk car seat. In Example

2, by contrast, a politician might say, “Yes, zero-risk is possible, if we don’t develop nuclear

weapons at all. Beyond that, I am concerned about the moral responsibility of choosing

an option that doesn’t minimize the probability of a catastrophe”. We do not attempt to

distinguish between discontinuities that are due to the nature of the lottery per se and those

that are due to the act of choosing it. We consider stated preferences over presumably-

observable choices, and it might be difficult to tell apart motivations that have to do with

the alternatives and with the act of choice. Indeed, the decision maker herself may not

always be able to draw this distinction.3

Which stated preferences are to be trusted and which are suspicious? In other words,

which of the discontinuities described above are rational for the decision makers stating

them? The question is obviously an empirical one, and it is unfortunately beyond the scope

of this paper. Our goal here is only to contribute to the discussion by providing analytical

tools to clarify what statements “really mean”. We adopt the axiomatic approach, consid-

ering presumably-observable choices, and asking, which regularities these choices should

satisfy in order to correspond to a certain description. Clearly, theoretical analysis cannot

determine to what degree certain preferences are rational, and for whom. But it can help in

translating abstract descriptions of preferences to concrete instances of choice, which may

be more easily conceived of by decision makers.

We view the contribution of the axiomatic treatment as twofold. First, it can help us

as theorists to judge the plausibility of discontinuous models, for positive and normative

purposes alike. From a positive viewpoint, it aids in bridging stated preferences with ob-

servable behavior by characterizing the revealed preferences that correspond to individuals’

linguistic statements. We can then use axioms as a predictive test, at least in principle, to

check whether descriptions of preferences are credible or not. From a normative viewpoint,

our axiomatic treatment offers a more encompassing notion of rationality, when acts of

choice carry meaning, that otherwise would be missing from the standard EUT paradigm.

More specifically, our characterizations should be thought of as a guide for choice behavior

in the presence of moral principles. As expected, some of our axioms (those pertaining to

weakenings of continuity) will not be testable in lab experiments as they involve infinitely

many comparisons; yet, this limitation should not prevent economists or decision makers

from using these axioms to consider hypothetical choices and to judge whether the dis-

continuity in preference stands to reason. The mind-experiments involved may be useful

to tell apart sincere concerns from less-sincere slogans. For instance, Example 3 brings to

3Relatedly, some discontinuities would disappear if we allow the act of choice to be part of the outcome.
Thus, a generalized outcome can be defined as a pair of a material outcome and the actor who is responsible
for bringing it about. However, such outcomes are not directly observable.
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the fore the case of stated lexicographic preferences. As argued before, this kind of state-

ments are rather common – notably in political speeches – when preferences are expressed

in natural language. One may therefore ask about the rationale behind these statements.

The axiomatic method arms us with the necessary tools to address this question: the non-

existence of a numerical representation of preferences in Example 3 suggests that actual

behavior would not follow the stated lexicographic preferences. If “the risk of losing hu-

man lives” is perceived as a continuous variable, the statement made might be in conflict

with actual decisions (if not vacuous). The second contribution of our axiomatic treatment

addresses the following issue: if we allow for the possibility of discontinuous preferences,

which model should we adopt? Of all the decision rules that violate continuity, which are

more plausible to use for descriptive and for normative purposes? The axiomatic approach

helps us in thinking about this problem, using hypothetical choice situations as a rhetorical

device to argue for or against certain models.

1.1 A Standpoint on Rationality

We view this paper as part of a more general project, studying violations of classical axioms

that can be regarded as rational. The term “rationality” is fraught with different mean-

ings, and, clearly, whether a mode of behavior is rational or not depends on the definition

one adopts. For example, Weber (1921) discussed four different notions of rationality and

rationalization, whereas Simon (1976) distinguished between substantive and procedural

rationality. As mentioned in the introduction, the definition we adopt here is rather prag-

matic, and it is based on the question: can theoretical analysis convince decision makers

that they would have liked to behave differently?

Whereas for many economists “rationality” is defined by the classical vNM axioms, psy-

chologists and economists have long noted that decision makers’ behavior is often non-linear

in probabilities, especially near zero (Preston and Baratta, 1948, Allais, 1953, Edwards,

1954, Kahneman and Tversky, 1979). Moreover, some of the alternative theories that have

been suggested to accommodate such behavior involve discontinuities (Gilboa, 1988, Jaf-

fray, 1988)4. Are these behaviors rational according to our definition? We suggest that an

axiomatic treatment is needed to conduct this rationality test.

In Minardi r○ Gilboa r○ Wang (2023) we employ this approach to study continuity

in consumer choice. Whereas classical theory assumes that preferences are continuous in

quantities of goods, there are cases in which households may systematically violate this as-

sumption. For example, a vegetarian consumer would exhibit discontinuities of preferences

at zero quantity of meat: the tiniest amount of meat renders a bundle non-vegetarian and

4In these models there is also a discontinuity at zero probability, but this is at the worst outcome within
each lottery. Specifically, a lottery is evaluated by some function of its expected utility as well as the worst
outcome in its support. By contrast, in the present paper we study discontinuity at zero probability of some
pre-defined outcomes. That is, the discontinuity emerges from something that is inherent to the outcome
(such as losing one’s baby) rather than from its relative ranking in the support of the lottery.
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can change behavior in a non-negligible way. Is such a discontinuity rational? We might put

it to a test, and imagine a dialog with the vegetarian consumer, in which we (the analysts)

try to argue that a single molecule of meat can’t possibly make a bundle less desirable in

noticeable way. Perhaps some consumers will be convinced that their zero-meat principle

is indeed foolish. But others are likely to respond, “Yes, of course, once we have even a

little bit of meat, I feel that I lose something qualitatively. Avoiding meat consumption is

a matter of principle for me. Consuming a non-vegetarian dish changes the meaning of the

act of consumption, and the assignment of meaning to acts behaves in a discontinuous way.”

Thus, such a consumer might insist on her stated, discontinuous preferences, and whether

we dub her rational or not, we have to admit that this type of behavior is here to stay. The

axiomatic analysis of such preferences is supposed to help decision makers ask themselves,

“Do I feel comfortable with this type of behavior?”

Along similar lines, the present paper attempts to aid the analysis of discontinuous

behavior when making choices under risk. As in the case of discontinuities in quantities

of goods, discontinuities in probabilities of outcomes cannot be directly observed in finite

databases of choices. But they can be described in a natural, legal, or formal language.

Is it rational to adopt such preferences? Do decision makers who state preferences in a

way that implies discontinuities in probabilities like their own preference, and do they

really mean what they say? We offer the axiomatic analysis as a way to address this

question: characterizing decision patterns that can be described in discontinuous ways may

aid decision makers in figuring out whether they wish to adopt such preferences despite the

violation of vNM’s continuity axiom.

Outline. We ask, which of the von Neumann-Morgenstern (vNM) axioms need to be

relaxed, and how, to allow for certain types of discontinuity. We focus on zero-risk, that is,

on preferences that are discontinuous at zero probability on a subset of outcomes, intuitively

thought of as the negative ones. For concreteness, we may think of the negative outcomes

as relating to a given principle, as in the baby seat example (Example 1). The next section

studies choice behavior when the agent wishes to abide by a certain principle, and faces

a cost when she takes the risk of violating it. In this single-value setting, we present

different weakenings of the Independence axiom and provide axiomatic characterizations

that clarify the content of such weakenings, as well as their relationship. Section 3 extends

this baseline model to the more complex case of choice behavior when multiple values are at

stake. Section 3.4 discusses the significance and applied relevance of our results as modelling

tools. All proofs are contained in the Appendix.
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2 A Single Principle

For this section we assume as given a principle (or criterion, value) by which outcomes are

classified. While this single-principle setting allows for easier illustration, the key insights

we gain here turn out to be applicable also for the general, multiple-principle case, as shown

in Section 3.

2.1 Setting

Let X be a finite set of outcomes and X0 ⊂ X be a proper, nonempty subset of X. Let

L = ∆(X) be the set of vNM lotteries on X. We consider a binary relation % on L, referred

to as the preference, with the symbols ≻ and ∼ standing for its asymmetric and symmetric

component, respectively. The preference is assumed to be complete and transitive.

A1. Weak Order: % is complete and transitive on L.

To streamline notation, the preference rank E % Q (resp. E ≻ Q) between a set E ⊂ L

of lotteries and a lottery Q ∈ L indicates that P % Q (resp. P ≻ Q) for all P ∈ E.

Likewise, the notations Q % E and Q ≻ E carry analogous meaning. For any two sets of

lotteries E,F ⊂ L, the preference rank E % F means P % F for all P ∈ E, or, equivalently,

P % Q for all P ∈ E and Q ∈ F .

Let L0 ⊂ L denote the subset of lotteries whose support is in X0 and define L1 = L\L0.

We think of the lotteries in L0 as “safe”, or “zero risk”, and the lotteries in L1 as “unsafe”.

Our focus is on how preferences treat lotteries in L0 and L1 in a different way, and on

delineating the formal meaning for this difference. To start with, we assume that the

standard vNM axioms are respected on the domains L0 and L1, separately. Notice that,

for all P,Q ∈ L and real number α ∈ [0, 1], the mixture notation αP + (1−α)Q stands for

the lottery that assigns probability αP (x) + (1− α)Q(x) to any outcome x ∈ X.

The following axioms are standard Archimedean and Independence properties imposed

on L0 and L1, separately.

A2. Restricted Continuity: For every P,Q,R ∈ L, if P ≻ Q ≻ R, and if

P,Q,R ∈ L0 or P,Q,R ∈ L1, then there exist α, β ∈ (0, 1) such that

αP + (1− α)R ≻ Q ≻ βP + (1− β)R.

A3. Restricted Independence: For every P,Q,R ∈ L, if P,Q,R ∈ L0 or

P,Q,R ∈ L1, then for every α ∈ (0, 1),

P ≻ Q =⇒ αP + (1− α)R ≻ αQ+ (1− α)R.

Since the mixture notion qualifies L0 and L1 as mixture sets in the sense of Herstein

and Milnor (1953), A1-A3 hold if and only if % admits an expected utility representation
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on L0 and L1, separately.5 More precisely, for any generic function u on X or on a subset

thereof, we denote its expectation by:

U (P ) = Eu (P ) =
∑

x∈X

P (x)u(x). (2.1)

Under A1-A3, there exist functions u0 on X0 and u1 on X such that, for every P,Q ∈ Li

with i ∈ {0, 1},

P ≻ Q ⇐⇒ Ui(P ) > Ui(Q).

Both u0 and u1 are unique up to affine transformation.

For easy reference to the functions u0 and u1, we maintain A1-A3 throughout this

section, though A2 and A3 are subsumed by the stronger axioms we are about to introduce.

2.2 Preference between L0 and L1

Throughout this section, we will make use of the following notion of preference overlapping.

Definition 1. We define the preference overlapping between the domains L0 and L1 as the

set

O∼ = {(P,Q) : P ∼ Q,P ∈ L0, Q ∈ L1}.

Similarly, we define O0,∼ = {P ∈ L0 : ∃(P,Q) ∈ O∼} and O1,∼ = {Q ∈ L1 : ∃(P,Q) ∈ O∼}

as the overlapping parts of L0 and L1, respectively.

The axioms A2 and A3 are silent about the structure of O∼, because they are only

applicable to lotteries belonging to the same domain. But, as both L0 and L1 are convex

and the utilities U0 and U1 are affine, it is reasonable to expect O0,∼ and O1,∼ to be convex,

as well. This can be achieved by a slight strengthening of the Restricted Continuity axiom.

A2*. Semi-Restricted Continuity: For every P,Q,R ∈ L, if P ≻ Q ≻

R, and if P,R ∈ L0 or P,R ∈ L1, then there exist α, β ∈ (0, 1) such that

αP + (1− α)R ≻ Q ≻ βP + (1− β)R.

While the bounding lotteries P and R are still required to be in the same domain, just

like A2, the bounded lottery Q can now belong to a different domain. The axiom rules out,

for instance, the case P ∈ L0 and R ∈ L1, for which any mixture between P and R risks

the principle and may be deemed much worse than both P and Q. However, as long as

P and R are in the same domain, their mixtures do not introduce a new layer of concern

over the principle. Hence, the usual normative argument for continuity is maintained - the

mixture presents a minimal variation on P when α is close to 1, or on R as β approaches 0.

5This is formally stated in Lemma 1, Section 5.1.
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Under A2*, the preferences on L0 and L1 overlap in a continuous way. This restricts

the class of monotone transformations of U0 that represent preferences on L0 to the case of

continuous monotone transformations, as we formalize next.

Proposition 1. Assume A1-A3. Then, A2* holds if and only if there exist functions u0 on

X0 and u1 on X, and a continuous strictly increasing function g : U0(L0) → R such that,

for every P ∈ L,

P 7→







g(U0(P )), P ∈ L0

U1(P ), P ∈ L1

represents %. The functions u0 and u1 are unique up to affine transformation, and, given

u0 and u1, function g is unique on U0(O0,∼).

Turning to A3, the Restricted Independence axiom, notice that it cannot be used when

lotteries from different domains are involved, and, like A2, this reflects the fact that the

mixture operation can have asymmetric effects on lotteries’ safety. For example, if P ≻ Q

when P ∈ L0 and Q ∈ L1, it is possible that the preference would reverse when we mix

the two with R ∈ L1: consider the mixtures 1
2P + 1

2R and 1
2Q+ 1

2R. Both are in L1, that

is, they are unsafe. However, as Q was unsafe to begin with, its status doesn’t change by

mixing. By contrast, P used to be a safe lottery, and the mixing with R made it unsafe.

As a result, there is no reason that the preference P ≻ Q would carry to the mixtures (of

each of P,Q with R).

Yet, we might limit such asymmetries and obtain a sensible condition even in the case

of mixtures of safe and unsafe lotteries. To start with, notice that if both P and Q are

safe lotteries, mixing them with an unsafe lottery would make both of them unsafe. If the

damage of becoming unsafe is the same for P and Q, then we can expect the preference

between them to be preserved after the mixture. We are hence led to the following stronger

version of A3.

A3*. Semi-Restricted Independence: For every P,Q,R ∈ L, if P,Q ∈

L0 or P,Q ∈ L1, then for every α ∈ (0, 1),

P ≻ Q ⇐⇒ αP + (1− α)R ≻ αQ+ (1− α)R.

As A3* still does not address the case where P ∈ L0 and Q ∈ L1, it gives no extra

structure to the preference overlapping O∼. However, we can further build on the idea of in-

dependence to shed light on this issue as well. Concretely, under the standard Independence

axiom, for any four lotteries P,Q,R, S, if P ∼ Q and R ∼ S, then 1
2P + 1

2R ∼ 1
2Q + 1

2S.

The immediate proof uses Independence twice, showing first that 1
2P + 1

2R ∼ 1
2Q+ 1

2R and

then that 1
2Q+ 1

2R ∼ 1
2Q+ 1

2S. In our case, the same argument would apply if all lotteries

involved are in the same space (L0 or L1). But if the indifference P ∼ Q (or R ∼ S) is

across spaces, A3 does not allow us to proceed with the argument.
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Indeed, if P,Q (with P ∼ Q) belong to different spaces while R,S (with R ∼ S) belong

to the same space, neither 1
2P + 1

2R ∼ 1
2Q + 1

2S nor 1
2P + 1

2S ∼ 1
2Q + 1

2R seems very

convincing. In particular, if P ∈ L0 while Q,R, S ∈ L1, mixing P with either R or S

involves venturing out of (the safe) L0 into (the unsafe) L1, while the other mixture does

not switch spaces. In such a case the original equivalences, P ∼ Q and R ∼ S, need not

imply the equivalence of the mixtures. Similar asymmetry would arise if, say, P,Q,R ∈ L0

but S ∈ L1.

However, there is some logic in expecting the equivalence of the mixtures to hold if the

mixing deals with the spaces in a “balanced” way. This suggests that an additional axiom

might be reasonably imposed. Note, however, that there are now two possible versions of

the axiom: one in which each mixing is done within a single space, and another in which

both mixing operations cross spaces. We are therefore led to state two separate properties.

We first state a weakening of independence where the mixing operator is applied within

each space:

A4. Intra-Space Independence: For P,Q ∈ L0 and P ′, Q′ ∈ L1, if

P ∼ P ′ and Q ∼ Q′, then 1
2P + 1

2Q ∼ 1
2P

′ + 1
2Q

′.

If an agent exhibits indifference between some safe lotteries and some unsafe ones, then

such an indifference will be preserved when comparing the mixture of the safe lotteries with

the mixture of the unsafe ones. Behaviorally, it states that if the hedonic values of the unsafe

lotteries counterbalance the risk of violating the principle so that the agent is indifferent in

the original comparisons between safe and unsafe lotteries, then such counterbalance will

be preserved when comparing the mixtures within each space. The next result clarifies

the gains of imposing Intra-Space Independence in terms of utility representation. Note

that even though the utility function u1 is derived from the preference on L1, it is actually

defined over the whole set of outcomes X, and hence U1 can be used to evaluate lotteries

in L0 according to equation (2.1).

Proposition 2. Assume A1-A3. Then, the following statements hold:

(1) A3* holds if and only if u0 and u1 can be chosen to be the same on X0.

(2) Assuming A2*, A4 holds if and only if the function g(·) in Proposition 1 can be chosen

to be affine.6

Proposition 2 shows that Axiom A3* only concerns the relationship between u0 and u1:

it guarantees that u0 and u1 can be chosen to be the same, and, hence, that the hedonic

values of both safe and unsafe lotteries can be computed using the same calibration of

utility. On the other hand, Axiom A4 only restricts the functional form of the bridging

function g(·) of Proposition 1 to be affine.

6A4 holds if and only if g(·) is affine on U0(O0,∼). However, g(·) still has flexibility on U0(L0\O0,∼).
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The second version of the independence axiom applies the mixing operator across the

spaces L0 and L1, as shown next:

A5. Inter-Space Independence: For P,Q ∈ L0 and P ′, Q′ ∈ L1, if

P ∼ P ′ and Q ∼ Q′, then 1
2P + 1

2Q
′ ∼ 1

2P
′ + 1

2Q.

Axiom A5 can be viewed as the symmetric version of A4: while the antecedent is the

same, the consequent maintains that indifference is preserved between the mixtures of safe

and unsafe lotteries. Thus, A4 compares safe mixtures with risky ones, whereas in A5 the

two mixtures become both risky. Behaviorally, A5 prescribes that in compounding safe

and risky lotteries in the mixtures, the hedonic values generated by the unsafe components

counteract the risk of violating the principle in the same way in which this counterbalance

takes place in the individual indifferences.

Note that A4 and A5 become vacuous when the preference overlapping O∼ is empty.

This can happen in two cases. If the agent considers any safe lottery strictly more valuable

than any risky lottery: such an agent always adheres to the principle of not taking any

risk. Or, if the agent considers any risky lottery strictly better than any safe one: in

this case, we can think of the outcomes in X\X0 as positive ones, where the discontinuity

occurs near certainty of the negative outcomes, X0.
7 Furthermore, for the full potential of

these axioms—especially of A5—we shall often require the preference overlapping O∼ to be

nontrivial, that is:

Definition 2. We say that O∼ is nontrivial if there exist (P,P ′) and (Q,Q′) in O∼ such

that P ≻ Q.

Definition 2 guarantees the existence of pairs (P,P ′) and (Q,Q′) in O∼ across which

the decision maker holds a strict preference, that is, P ′ ∼ P ≻ Q ∼ Q′. This ensures that

the overlap between L0 and L1 admits strict preferences and, hence, does not consist only

of trivial indifferences. Armed with this notion of nontriviality, we can state a preliminary

result that clarifies the relation between these three distinct weakenings of independence

and, in particular, highlights the strength of A5 over A3* and A4.

Proposition 3. Assume that A1, A2*, and A3 hold, and O∼ is nontrivial. Then A5 implies

A3* and A4.

We are now ready to characterize the content of Inter-Space Independence (A5) in terms

of utility representation. We view it as our first main result providing a structured and

tractable model of decision makers that have a preference for “zero risk”.

Theorem 1. The following statements are equivalent:

7For example, a military operation would typically involve some risk to human lives, but sending troops
to a certain death may feel different than putting their lives at risk.
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(i) The preference % satisfies A1, A2*, and A3. Moreover, A5 holds if O∼ is nontrivial

and otherwise A3* holds.

(ii) The preference % can be represented as follows: for every P ∈ L,

P 7→







U(P ) + b, P ∈ L0

U(P ), P ∈ L1

, (2.2)

where U(·) denotes the expected utility for some utility function u : X → R and b ∈ R.

Moreover, u is unique up to affine transformation and, when O∼ is nonempty, b is

unique given u.

Theorem 1 shows that Axiom A5 delivers more than A3* and A4 combined together,

since the function g(·) now has to be a translation. Representation (2.2) evaluates lotteries

by means of two parameters, the utility function, u, and the cost, b, that the agent attaches

to the risk of obtaining an (undesirable) outcome in X\X0. Intuitively, L0 and L1 are like

two paper slips glued together, with the glued part standing for the overlapping O∼. Thus,

a risky lottery is evaluated according to a standard expected utility criterion with Bernoulli

utility given by some u. For a safe lottery, instead, the overall utility is given by the expected

utility component (with same u), that reflects purely hedonic aspects, plus a premium,

quantified by b, that reflects the value from satisfying the principle of not taking any risk.

Naturally, the parameter b can be thought of as a premium for choosing a safe lottery or,

equivalently, as a cost incurred for choosing a risky lottery. Under either interpretations,

the parameter b captures the agent’s preference for “zero risk”, and the additive form allows

us to identify it uniquely and to distinguish it from the hedonic component. The simplicity

of the utility structure, together with its uniqueness properties, makes the model highly

tractable, as shown by our comparative analysis later on.

An alternative characterization. We now approach the model in (2.2) from a different

behavioral angle. This alternative characterization will be useful to extend our results to

the case of multiple principles in the next section. To start, if two lotteries are indifferent

to the agent and both of them assign the same probability to a safe outcome x, we should

be able to expect this indifference to be intact after x is changed to another safe outcome

x′. The reason is two-fold. First, changing a safe outcome to another safe outcome does not

alter the nature of the lottery, that is, it stays in L0 or L1. Second, we expect the hedonic

utility of a safe outcome to be the same across any two lotteries. We are hence led to the

following axiom.

A6. L0-Cancellation: For every P ∈ L0, Q ∈ L1, R,R′ ∈ L0, and

α ∈ (0, 1),

αP + (1− α)R ∼ αQ+ (1− α)R =⇒ αP + (1− α)R′ ∼ αQ+ (1− α)R′.
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That is, whether P is indifferent to Q should not depend on a common zero-risk com-

ponent R shared by the two lotteries. This axiom also carries the idea of independence,

and, indeed, it is implied by the standard independence axiom. It is very similar to the

weakening of Independence used in Maccheroni, Marinacci, and Rustichini (2006), though,

as shown in our proofs, the mathematical underpinnings are quite different.

If L0 and L1’s preference overlapping O∼ is empty, A6 is immaterial and in particular

U0 and U1 may disagree arbitrarily on L0. If O∼ is nonempty but U0(O0,∼) is a singleton

(that is, for all (P,P ′), (Q,Q′) ∈ O∼, we have P ∼ Q), A6 is again immaterial if, for all

(P,P ′) ∈ O∼, the supports of P and P ′ are disjoint. But if the supports intersect for some

(P,P ′) ∈ O∼, then we can take any outcome x in this intersection and P ∼ P ′ can be

re-written as

αP̂ + (1− α)x ∼ αP̂ ′ + (1− α)x

for some P̂ ∈ L0 and P̂ ′ ∈ L1, and α ∈ (0,min{P (x), P ′(x)}]. By A6 we have αP̂ + (1 −

α)Q ∈ O0,∼ for all Q ∈ L0, and, by the linearity of U0 and U0(O0,∼) being a singleton, we

must have x ∼ Q for all Q ∈ L0, indicating total indifference on L0.

A6 delivers much more when O∼ is nontrivial. Roughly speaking, A6 indicates that

lotteries in L0 are locally evaluated in the same way by U0 around P and U1 around

P ′. Due to the linearity of expected utility, A6 implies that U0 and U1 have the same

evaluation over the entire L0, which is also what A3* demands. And, by integrating this

local property across O∼, A6 can also yield the global properties of A4 and A5. We hence

have the following result.

Proposition 4. Assume that A1, A2*, and A3 hold and O∼ is nontrivial. Then, A6 implies

A3* and A4, and it is equivalent to A5.

Proposition 4 is similar to Proposition 3: the only key novelty comes from the equiva-

lence between Inter-Space Independence (A5) and L0-Cancellation (A6). This means that

the axiomatic underpinning of Representation (2.2) rests on either of the two properties.

Both axioms can be easily tested in a lab experiment, and have a clear behavioral interpre-

tation. A6 is an immediate weakening of Independence, and it is, perhaps, cognitively less

demanding, from both a descriptive and normative perspectives.

2.3 Positive Cost and Comparative Analysis

Representation (2.2) does not impose any restriction on the sign of the parameter b. Clearly,

assuming standard continuity throughout L would imply b = 0. However, under Semi-

Restricted Continuity A2*, we can state conditions under which b in representation (2.2)

has to be positive or negative. For example, in the extreme case where all safe lotteries are

deemed strictly better than any unsafe lottery (i.e., L0 ≻ L1), it is easy to see that b ≥ 0.

Similarly, in the opposite extreme case where L1 ≻ L0, it must be that b ≤ 0. Consider the

most interesting case where the preference overlapping O∼ is nonempty so that b is uniquely
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identified, thereby allowing us to draw sharper inferences. In particular, let P ∼ Q for some

P ∈ L0 and Q ∈ L1. Then, mixing P and Q can only be less valuable than P alone since

the mixture alters the zero-risk nature of P without bringing any hedonic benefits. We

formalize this intuition below and show that it behaviorally characterizes the case where

b > 0.

Positivity: For every P ∈ L0 and Q ∈ L1, P ∼ Q implies P ≻ αP+(1−α)Q

for every α ∈ (0, 1).

Proposition 5. Suppose that % admits representation (2.2) and O∼ is nonempty. Posi-

tivity holds if and only if b > 0.

For agents whose preferences are represented by (2.2) with b > 0, a natural question that

arises is how agents may differ in their attitudes toward “unsafe” lotteries. The following

definition formalizes, in behavioral terms, what it means for one agent to be more averse

to selecting “unsafe” lotteries than another agent.

Definition 3. Let %1 and %2 be two preferences on L. Then, %1 is more inclined to

zero-risk than %2 if the following conditions are satisfied:

(i) for every Q,S ∈ L1, Q %1 S if and only if Q %2 S,

(ii) for every P ∈ L0 and Q ∈ L1, P %2 Q implies P %1 Q.

Condition (i) ensures that agents have the same preferences over L1. This is a pre-

requisite for making meaningful comparisons between agents. Condition (ii) is the key

comparative notion: suppose that Agent 2 prefers some safe lottery, P , to some other risky

one, Q. If Agent 1 is more inclined to zero-risk than Agent 2, then she will, a fortiori, prefer

P to Q.

The following proposition characterizes the comparative notion of inclination to zero-

risk in terms of the representation provided in Proposition 2. The notation u1 ≈ u2 stands

for u1 = λu2 + d for λ > 0 and d ∈ R.

Proposition 6. Let %1 and %2 be two preferences on L that admit representation (2.2)

with (u1, b1) and (u2, b2), respectively. Suppose further that %2 has a nonempty preference

overlapping. Then, the following conditions are equivalent:

(i) %1 is more inclined to zero-risk than %2,

(ii) u1 ≈ u2 and, normalizing the representations to have u1 = u2, we also have b1 ≥ b2.

Proposition 6 states that more-inclined-to-zero-risk preferences are characterized by

greater parameters b, up to a normalization. For concreteness, focus on the case b1, b2 > 0,

in which both individuals prefer zero-risk. Thus, bi is the cost incurred by individual i

should she choose a positive-risk lottery, where bi is measured on the expected utility scale.

Comparing two such individuals, %1 is more inclined to zero-risk than %2 is, after having

normalized their utility functions, we have a higher cost for individual 1 than for 2. In

short, the parameter b can thus be thought of as an index of inclination to zero-risk.
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2.4 Infinitely Many Outcomes

We now extend the analysis to the case where the set X may contain infinitely many

outcomes (e.g., all monetary outcomes), and, correspondingly, the preference % is defined

over the set L = ∆0(X) of simple lotteries (that is, lotteries with finitely many outcomes

in the support). When the number of outcomes is infinite, utility U1 in representation (2.2)

can be unbounded and, given a finite b, every lottery in L0 must be less preferred than

some lottery in L1. For this reason, we need a preference condition to convey the idea that

“every principle has a price”, and, as we shall see, this is the only extra care we need to take

in extending the model to the case of infinitely many outcomes.

We start by commenting that all the axioms stated for the finite-outcome case are

still applicable here. In what follows, we try to formulate unbounded utility in terms of

preference.

Definition 4. A sequence of lotteries {Pn}
∞
n=1 entirely contained in either L0 or L1 is

ascending if P2 ≻ P1 and 1
2Pn+1 + 1

2Pn−1 % Pn for all n ≥ 2, and it is descending if

P1 ≻ P2 and Pn % 1
2Pn+1 +

1
2Pn−1 for all n ≥ 2.

When the preference % is linear on L0 and L1, as guaranteed by the Restricted Inde-

pendence axiom A3, the relation 1
2Pn+1 +

1
2Pn−1 %

1
2Pn +

1
2Pn suggests that the difference

between Pn+1 and Pn more than compensates that between Pn and Pn−1. In the same

spirit, given P2 ≻ P1, the “preference incremental” from Pn to Pn+1 should be higher than

that from P1 to P2, for all n ≥ 2. Hence, an ascending sequence of lotteries is an indication

of a utility function that is not bounded from above. Similarly, a descending sequence of

lotteries signals a utility function that is not bounded from below. We are therefore led to

the following condition.

Archimedeanity: For any ascending sequence of lotteries {Pn}
∞
n=1, there

cannot exist a Q such that Q % Pn for all n. And, for any descending sequence

of lotteries {Pn}
∞
n=1, there cannot exist a Q such that Pn % Q for all n.

If we have an ascending sequence {Pn}
∞
n=1 in L1, Archimedeanity implies that for any

zero-risk lottery Q, there always exist some Pn in the sequence such that Pn % Q. Concep-

tually, it rules out the scenario where values consideration overwhelms hedonic appeal no

matter how large the latter is.

Proposition 7. The following two statements are equivalent:

(a) The preference % satisfies A1, A2*, and A3. If O∼ is nontrivial, then A5 holds,

otherwise A3* holds. Furthermore, if O∼ is empty, Archimedeanity holds.

(b) The preference % can be represented as follows: for every P ∈ L,

P 7→







U(P ) + b, P ∈ L0

U(P ), P ∈ L1

, (2.3)
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where U(·) denotes the expected utility for some utility function u : X → R and b ∈ R.

Moreover, u is unique up to affine transformation and, when O∼ is nonempty, b is

unique given u.

Note that Archimedeanity is invoked only when O∼ is empty: in this case, we need to

rule out the case where the agent prefers any risky lottery to any safe lottery (or vice versa).

When O∼ is non-empty, Archimedeanity is superfluous and the statement of Proposition 7

is exactly the same as that of the finite case (see Theorem 1). Hence, the key behavioral

conditions (mostly A5) remain unchanged.

3 Multiple Principles

It is not uncommon for economic agents to have more than one principle. In verbal discus-

sions people tend to espouse many principles, each of which sounds convincing on its own.

The question then arises, what will they do when these principles are in conflict with each

other and/or with hedonic well-being? This section extends the previous single-principle

analysis to this more general setup.

3.1 Setting

Let X denote a finite collection of outcomes and L = ∆(X) be the set of vNM lotteries

on X. Furthermore, let K = {1, 2, ...,K} be a family of K principles where each principle

k ∈ K is associated with a set of outcomes Xk ⊂ X that violate principle k. The set

X0 = X\(∪k∈KXk) comprises the “good outcomes” that do not violate any principle. For

any subset I ⊂ K of principles, let

LI = {P ∈ ∆(X) : P (Xk) > 0,∀k ∈ I;P (Xk′) = 0,∀k′ ∈ Ic}

denote the set of lotteries that risk violating all and only those principles in I . When

I = ∅, L∅ = ∆(X0) is the set of zero-risk lotteries. Notice that lotteries in LI are also

allowed to assign positive probabilities to the good outcomes X0. In general, every P ∈ LI

has its support contained in X0 ∪ (∪k∈IXk\ ∪k′∈Ic Xk′). Moreover, LI ∩ LI′ = ∅ for all

I 6= I ′, and ∆(X) = L∅ ∪ (∪I⊂KLI).

We shall impose the following structural condition throughout, which guarantees that

LI 6= ∅ for all I ⊂ K.

Principle Identification: X0 6= ∅, and, Xk\ ∪k′ 6=k Xk′ 6= ∅ for every

k ∈ K.

Under this condition, LI is nonempty and consists of lotteries that only assign positive

probabilities to X0 and Xk\ ∪k′ /∈I Xk′ for all k ∈ I .
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As before, we consider a binary relation % on ∆(X), referred to as the preference. We

will make use of the following notions, that adapt the previous definition of overlapping

preference to the multiple-principle setup:

Definition 5. We say that

• for every I, I ′ ⊂ K, OII′ = {(P,Q) : P ∼ Q,P ∈ LI , Q ∈ LI′} denotes the preference

overlapping between LI and LI′;

• LI and LI′ are %-connected, or, simply, connected if OII′ 6= ∅;

• for any set S ⊂ 2K, {LI}I∈S is connected if, for every I, I ′ ∈ S, there exists a finite

sequence {LI(n)}
N
n=1 in {LI}I∈S with LI(1) = LI , LI(N) = LI′, and LI(n) and LI(n+1)

are connected, for 1 ≤ n ≤ N − 1.

We now present two multiple-principle analogies to model (2.2). The general version

associates every subset of principles, I , with a real-number bI , which measures the cost of

violating (all and only) the principles in I . The special version presents the refinement that

every bI is equal to the sum of the costs of individual principles in I , that is bI =
∑

k∈I bk.

3.2 The General Case

We start by adapting a few axioms used for the single-principle case to the more general

multiple-principle version. Our exposition here will be concise as the content of these

properties has been already discussed in detail for the single-principle case. The first axiom,

generalizing Semi-Restricted Continuity (A2*), maintains continuity when mixing lotteries

that belong to the same LI , because the mixture will still violate the principles in I and,

hence, it is in LI , as well.

MP 1. Semi-Restricted Continuity: For every I ⊂ K, P,R ∈ LI , and

Q ∈ L, if P ≻ Q ≻ R, then there exist α, β ∈ (0, 1) such that

αP + (1− α)R ≻ Q ≻ βP + (1− β)R.

Note that Axiom MP1 reduces to Axiom A2* in the special case of one single principle,

i.e., if I = {1}. The second axiom preserves independence within each LI , and, in addition

to that, it applies to the case in which two lotteries in some LI are mixed with a lottery in a

different LK. The idea is that mixing with some R ∈ LK brings in further violations of the

principles in K\I to both mixture lotteries, which are therefore expected to be penalized by

the same amount. This is a direct generalization of Semi-Restricted Independence (A3*):

indeed, the original formulation of A3* is recovered by setting K = {1} and I = ∅.
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MP 2. Semi-Restricted Independence: For every I ⊂ K, P,Q ∈ LI ,

R ∈ LI ∪ LK, and α ∈ (0, 1),

P % Q ⇐⇒ αP + (1− α)R % αQ+ (1− α)R.

The third axiom concerns comparisons across any two different spaces LI and LI′ , and

it is a direct generalization of L0-Cancellation (A6). Indeed, if we have only one principle,

then K = I = {1},I ′ = {∅}, and Axiom MP3 coincides with the Axiom A6. The original

content of this property is thus intact: a commonly shared zero-risk component should not

affect the ranking of any two lotteries.

MP 3. L∅-Cancellation: For every I,I ′ ⊂ K, P ∈ LI , Q ∈ LI′, R,R′ ∈

L∅, and α ∈ (0, 1),

αP + (1− α)R ∼ αQ+ (1− α)R =⇒ αP + (1− α)R′ ∼ αQ+ (1− α)R′.

Theorem 2. Assume that Principle Identification holds, and that the preference % on L is

a weak order such that there exist S, T ∈ L∅ with S ≻ T . Then, the following statements

are equivalent:

(i) The preference % satisfies MP1-MP3;

(ii) There exist an affine utility function U on L, denoting the expected utility for some

utility function u : X → R that is not constant on X0, and a set of real numbers

{bI}I⊂K such that, for every I,I ′ ⊂ K, P ∈ LI, and Q ∈ LI′,

P % Q ⇐⇒ U(P )− bI ≥ U(Q)− bI′ .

Moreover, u is unique up to affine transformations, and, for every I, I ′ ⊂ K, if LI and

LI′ connected, then bI − bI′ is unique given u. In particular, {bI}I⊂K is unique up to

translations given u if {LI}I⊂K is connected.

Theorem 2 is a direct generalization of Theorem 1 to the case of multiple principles.

The overall assessment of a lottery P ∈ LI is now determined by the sum of its hedonic

value – measured, as usual, by the utility U – and the cost associated to the set I of

principles that risk being violated – measured by the parameter bI . In particular, for every

possible set I of principles, the above result identifies uniquely a penalty bI arising from

accepting the risk of violating all, and only, the principles in the set I . Note that Theorem

2 accommodates several types of comparisons. In particular, it allows to compare not only

safe lotteries with lotteries that violate a certain set of principles, but also to compare risky

lotteries that violate different sets of principles. Furthermore, it also provides guidance in

the comparisons of two lotteries that violate a single but distinct principle: for instance,
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suppose that an agent considers two principles, given by K = {1, 2}, and compares a

lottery P ∈ L1, violating principle 1, with a lottery Q ∈ L2, violating principle 2. The two

principles can be associated to different costs, thereby making the comparison generally

nontrivial. To illustrate, we can turn back to Example 2 discussed in the Introduction

about atomic weapons. In that historical background, one could think of two principles

at stake: the principle of not risking the Nazi to win World War II and the principle

of not risking to destroy the world with the atomic bomb. Abiding by either of these

two principles would entail choosing an action (respectively, developing atomic weapons

or refraining from doing it) which would be in conflict with the other principle. Our

model provides a formal framework to reason about difficult problems involving principles

in conflict with each others, and it indicates that the decision process should be based on

the relative comparisons of material well-being and costs associated to each action.

Finally, note that in Theorem 2, the cost bI for all I ⊂ K can be any real number.

However, it is clear that we can adopt similar conditions as the Positivity condition of

Section 2.3 to make the costs strictly positive. And, infinite outcomes can be accommodated

by an extra condition in the spirit of the Archimedeanity of Section 2.4.

We next give a brief summary of the proof.

Proof sketch. To start, note that MP1 and MP2 imply the standard vNM axioms on

each LI and, hence, we obtain vNM expected utility functions {UI}I⊂K. We then show

that there exists a single expected utility function U defined on the entire domain L =

∆(X), and for any two I,I ′ ⊂ K, there exists a number bII′ ∈ R such that U + bII′

on LI and U on LI′ jointly represent % on LI ∪ LI′ . This is mostly due to MP3 when

OII′ is nontrivial (that is, there exist (P,P ′) and (Q,Q′) in OII′ with P ≻ Q); and, it

is due to MP2 otherwise, by arguments similar to those in Proposition 2 and 4.8 Now we

need to reduce the number of parameters in {bII′}I,I′⊂K to that of {bI}I⊂K, and a main

message of the proof is that this reduction comes for free. The key step entails showing

that, for example, for any loop of LI ’s, by which we mean a finite collection {LI(n)}
N
n=1 with

LI(1) = LI(N) and LI(n) being connected to LI(n+1) for all 1 ≤ n ≤ N − 1, it must be that
∑N−1

n=1 bI(n)I(n+1) = 0. Here the proof essentially relies on induction. Once established, this

kind of property allows us to obtain the desired result for any connected collection of LI ’s.

Finally, we divide {LI}I⊂K into disjoint (in preference terms) sub families of connected

LI ’s. Representation results on each of the sub families can be brought together to deliver

an unified model.

8For this step, we could have opted for a generalization of A5 (that is, replacing L0 and L1 by any two
LI and LI′) as opposed to MP 3, which is a generalization of A6. However, mixing P ∈ LI with Q ∈ LI′ ,
as needed by a generalization of A5, will result in a lottery that is in LI∪I′ , hence bringing in a third
domain LI∪I′ to the analysis. MP 3, on the other hand, allows us to stay in the two domains LI and LI′ .
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3.3 The Additive Case

A special case of Theorem 2 associates every principle k ∈ K with a number bk, conveying

the idea that risking principle k induces cost bk and risking a set I ⊂ K of principles induces

cost
∑

k∈I bk. Here the trade-off between expected (hedonic) utility and the principles is

treated in an additive manner, and, on top of that, the cost of violating a set of principles

is also additive in the individual costs. We now investigate the preference condition(s) for

this extra additivity in costs.

For example, consider the two-principle case with K = {1, 2}. Suppose that there exist

P1 ∈ L∅, Q1 ∈ L{1}, P2 ∈ L{1,2} and Q2 ∈ L{2} with P1 ∼ Q1 and P2 ∼ Q2. Additive

cost entails that the (hedonic) utility difference between Q1 and P1 and that between P2

and Q2 should be the same, as they are both equal to the cost of violating principle 1. In

preference terms, this can be stated as 1
2P1 +

1
2P2 ∼ 1

2Q1 +
1
2Q2. Similarly, if there exist

P1, P2, Q3 ∈ L∅, Q1 ∈ L{1}, Q2 ∈ L{2}, and P3 ∈ L{1,2} with P1 ∼ Q1, P2 ∼ Q2, P3 ∼ Q3,

additive cost mandates that the utility difference between P3 and Q3, which measures the

cost of violating both principles, should be equal to the sum of the utility difference between

Q1 and P1 and that between Q2 and P2, which measure the cost of the two principles

separately. This can be stated in preference terms as 1
3P1+

1
3P2+

1
3P3 ∼ 1

3Q1+
1
3Q2+

1
3Q3.

The general idea can be formulated as follows. Notice that the symbol 1I for any I ⊂ K

stands for the indicator function on K that takes value 1 on I and 0 on Ic.

Additivity: For any finite collection of Pn ∈ LIn and Qn ∈ LJn
with Pn ∼

Qn, 1 ≤ n ≤ N , if
∑N

n=1 1In =
∑N

n=1 1Jn
, then

∑N
n=1

1
NPn ∼

∑N
n=1

1
NQn.9

The next result shows that Additivity delivers a representation where the overall cost

of violating a given set of principles is given by the sum of the costs associated with each

principle in the set.

Proposition 8. Assume that the conditions and the axioms of Theorem 2 hold, and that

{LI}I⊂K is connected. Additivity holds if and only if there exist an affine utility function

U on L and a set of real numbers {bk}k∈K such that, for every P ∈ LI and Q ∈ LI′ with

I,I ′ ⊂ K,

P % Q ⇐⇒ U(P )−
∑

k∈I

bk ≥ U(Q)−
∑

k∈I′

bk. (3.1)

The function U is unique up to affine transformations, and, the set {bk}k∈K is unique given

U .

3.4 Discussion of the Results

Theorem 2 associates a single cost bI for choosing lotteries that violate a set I of principles.

It is silent about how this overall measure comprises the costs associated to each of the

9See Kraft, Pratt, and Seidenberg (1959), who also used a similar condition, based on summations of
indicator functions, to obtain an additive structure.
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principles in I . Proposition 8 adds important structural specifications by allowing us to

map the violation of each principle k in I to a corresponding cost bk for the agent. It

therefore allows not only to identify the sets of principles that are relevant for an agent,

but also to elicit the relative importance of the principles within a set. This extra structure

substantially enlarges the range of applicability of our model. Indeed, similarly to the more

general Theorem 2, this result can be used to address problems where the agent holds a

set of principles that are potentially in conflict with each other. While Theorem 2 does not

restrict the way different principles are aggregated to make decisions, Proposition 8 imposes

a linear structure and maintains that the total cost is given by the sum of the individual costs

associated to each violated principle. We can interpret {bk}k∈K as identifying an individual’s

system of values. Representation (3.1) then captures the behavior of a decision maker who

entertains a preference for “zero risk” for multiple types of risk. When a conflict among

different values arises, our representation can help to guide decisions by suggesting that the

conflict resolution will hinge on the way the relative importance of the individual’s principles

contributes to the overall utility together with material considerations. For instance, one

may hold two principles, the one of not risking a child’s life and the other of not risking

her mental health; and, then, she may face the dilemma of choosing to live in a less-safe

country where her child feels at home versus choosing a safe country in which she would be

an outsider.

Finally, Proposition 8 can be used to compare agents in terms of the relevance they

attribute to each principle. In particular, our model allows to estimate the effects of each

value on choice. From an applied perspective, such estimations can be informative to public

institutions and can be used to elicit citizens’ support for a certain policy. For instance,

many countries face difficult decisions regarding nuclear energy, especially in light of climate

change. Nuclear energy is nonpollutant as long as all goes well, but it can obviously be

very dangerous. Is there any level of safety of nuclear plants that would make them an

acceptable source of energy? Expected utility theory suggests that the answer is in the

affirmative. Yet, many seem to think differently, and to view any positive level of risk as

different from zero. Further, in many countries this seems to be the dominant public view

and sometimes also the implemented government policy.

To sum, our representations provide modelling tools that: (i) allow to formally describe

the modes of actual behavior that arise from stating discontinuous preferences; (ii) norma-

tively guide individuals’ reasoning process when the decision process is driven by “zero-risk”

principles; and (iii) arm an external observer (say, a policy maker or a public institution)

with the necessary toolkit to estimate the importance of a certain principle within a soci-

ety and, therefore, to elicit how much material well-being a society is willing to sacrifice

to abide by that principle. This is an important step to assess the support of a society

for a certain policy. Admittedly, the standard paradigm of expected utility does not seem

capable of addressing all these issues.
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5 Appendix: Proofs and Related Analysis

5.1 Proof of Proposition 1

Lemma 1. Axioms A1-A3 hold if and only if there exist u0 on X0 and u1 on X such that

Ui represents % on Li for i ∈ {0, 1}.

Proof. The sets L0 and L1 are mixture sets in the sense of Herstein and Milnor (1953).

The vNM axioms that we impose on L0 and L1, separately, are simply the Herstein and

Milnor axioms applied to lottery mixtures. The Herstein and Milnor result is therefore

directly applicable, and we get u0 on X0 and u1 on X such that Ui represents % on Li,

i ∈ {0, 1}.

From now on we shall take Axioms A1-A3 as implicitly given and refer to ui and Ui

freely, i ∈ {0, 1}.

Lemma 2. (Solvability) Under A2*, for every P,Q,R ∈ L with P ≻ Q ≻ R, if P,R ∈ L0

or P,R ∈ L1, then there exists β ∈ (0, 1) such that βP + (1− β)R ∼ Q.

Proof. The sets B+ = {β ∈ (0, 1) : βP + (1 − β)R ≻ Q} and B− = {β ∈ (0, 1) : Q ≻

βP + (1 − β)R} are nonempty and open by A2* and are disjoint. Then the set B∼ =

(0, 1)\(B+ ∪B−) has to be nonempty by the connectedness of (0, 1) and indeed a singleton

by A3. Take the β∗ ∈ B∼, it must be that β∗P + (1− β∗)R ∼ Q.

We can now establish Proposition 1.

Proof. We focus on A2*’s sufficiency, as its necessity is straightforward.

Both O0,∼ and O1,∼ are convex. For all P,R ∈ O0,∼, let P ′, R′ ∈ O1,∼ be lotteries such

that P ∼ P ′ and R ∼ R′. If P ∼ R, then for all α ∈ (0, 1), αP + (1− α)R ∼ P ∼ P ′ and,

therefore, αP+(1−α)R ∈ O0,∼. If P ≻ R, then for all α ∈ (0, 1), P ′ ≻ αP+(1−α)R ≻ R′.

By the solvability property, there exists a β ∈ (0, 1) with βP ′+(1−β)R′ ∼ αP +(1−α)R,

implying that αP + (1− α)R ∈ O0,∼. The case for P,R ∈ O1,∼ is similar.

For all R ∈ L0\O0,∼, either R ≻ L1 or L1 ≻ R. This follows directly from the solvability

property, because if there are R ∈ L0\O0,∼ and P,Q ∈ L1 with P % R % Q, R must be in
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O0,∼, a contradiction. Likewise, for all R ∈ L1\O1,∼, either R ≻ L0 or L0 ≻ R. It follows

immediately that if P ∈ L0\O0,∼ and P ≻ L1, then we cannot have Q ∈ L1\O1,∼ with

Q ≻ L0, and similar statements can be made for the other three scenarios.

If O∼ = ∅, from the last paragraph we must have either L0 ≻ L1 or L1 ≻ L0. In the

first case, let g(U0(P )) = (supS∈L1
U1(S) + 1) + (U0(P )− infS∈L0

U0(S)) for all P ∈ L0.

And, in the latter case, let g(U0(P )) = (infS∈L1
U1(S)− 1) + (U0(P )− supS∈L0

U0(S)) for

all P ∈ L0. This g function simply translates U0 by a constant and hence it is strictly

increasing and continuous. By construction, along with U1, it represent %.

From now on we assume O∼ 6= ∅. The function g can be constructed as follows. For every

R ∈ O0,∼, take any R′ ∈ L1 with R′ ∼ R and let g(U0(R)) = U1(R
′). For any R ∈ L0\O0,∼

with R ≻ L1, let g(U0(R)) =
(

U0(R)− supS∈O0,∼
U0(S)

)

+supS∈O0,∼
g(U0(S)). For any R ∈

L0\O0,∼, with L1 ≻ R, let g(U0(R)) =
(

U0(R)− infS∈O0,∼
Uo(S)

)

+ infS∈O0,∼
g(U0(S)).

We now prove that function g is continuous. Let us first analyze g restricted to the con-

vex interval U0(O0,∼) ⊂ R. Since g is strictly increasing, discontinuity takes the form that

for some lottery P ∈ O0,∼, either the left limit of g at U0(P ), g−(U0(P )), is strictly smaller

than g(U0(P )), or the right limit at U0(P ), g+(U0(P )), is strictly larger than g(U0(P )). In

the former case, take any Q ∈ O0,∼ with U0(Q) < U0(P ) and let P ′, Q′ ∈ O1,∼ be the lotter-

ies such that P ∼ P ′ and Q ∼ Q′. By definition we have g(U0(P )) = U1(P
′) > g(U0(Q)) =

U1(Q
′) and there exists β ∈ (0, 1) such that U1(βP

′ + (1− β)Q′) ∈ (g−(U0(P )), g(U0(P ))).

This indicates that βP ′ + (1− β)Q′ /∈ O1,∼, which contradicts the convexity of O1,∼. The

argument that rules out g+(U0(P )) > g(U0(P )) is similar. On U0(L0)\U0(O0,∼) and the

boundary of U0(O0,∼), g is by construction linear and hence continuous.

It remains to prove that the functions g◦U0 and U1 together represent %. The statement

is obviously true for any P,Q that are both in L0 or L1, since the function g is strictly

increasing by construction. Thus, consider the case where P ∈ L0 and Q ∈ L1, and assume

that g(U0(P )) ≥ U1(Q). If P ∈ O0,∼ and hence there exists P ′ ∈ L1 with P ′ ∼ P , we then

have U1(P
′) = g(U0(P )) ≥ U1(Q) and therefore P ∼ P ′ % Q. If P ∈ L0\O0,∼ but L1 ≻ P ,

then either Q ∈ O1,∼ or Q ≻ O1,∼, which implies Q % S for some S ∈ O1,∼. For any S′ ∈ L0

with S′ ∼ S, we then have Q % S ∼ S′ ≻ P and hence U1(Q) ≥ U1(S) = g(U0(S
′)) >

g(U0(P )), a contradiction. So, it must be that P ≻ L1 and P ≻ Q in particular. The case

of g(U0(P )) ≤ U1(Q) implying Q % P follows from similar arguments. Vice versa, assume

that P % Q with P ∈ L0 and Q ∈ L1. If P ∈ O0,∼, there exists P ′ ∈ O1,∼ with P ′ ∼ P % Q,

from which we get g(U0(P )) = U1(P
′) ≥ U1(Q). If P ∈ L0\O0,∼, then P ≻ L1 and there

exists R ∈ O0,∼ with P ≻ R % Q, from which we get g(U0(P )) > g(U0(R)) ≥ U1(Q). The

case for P % Q with P ∈ L1 and Q ∈ L0 can be similarly addressed.

5.2 Proof of Proposition 2

Proof. For both statements we shall focus on the sufficiency of the axioms, as their necessity

is straightforward.

24



(1) For all P,Q ∈ L0 and R ∈ L1, we have P ≻ Q if and only if U1(αP + (1 − α)R) >

U1(αQ+ (1−α)R). Since U1 is linear, we have P ≻ Q if and only if U1(P ) > U1(Q),

which implies that U0 and U1 are cardinally equivalent.

(2) If O0,∼ = ∅ or U0(O0,∼) is a singleton, the function g ◦ U0 is, by construction, a

translation of U0 and, hence, g(·) is affine. We next assume that U0(O0,∼) is a non-

degenerate interval. A4 implies that for any P,R ∈ O0,∼ and P ′, R′ ∈ O1,∼ with P ∼

P ′ ≻ R ∼ R′, we have g(U0(
1
2P + 1

2R)) = U1(
1
2P

′ + 1
2R

′). Since g(U0(P )) = U1(P
′)

and g(U0(R)) = U1(R
′) by construction, we obtain, by the linearity of U0 and U1,

that g(12U0(P )+ 1
2U0(R)) = 1

2g(U0(P ))+ 1
2g(U0(R)). Since P,R ∈ O0,∼ are arbitrary

and g is continuous, we conclude that g is affine on U(O0,∼). That is, there are a

scaling parameter a > 0 and a translation parameter b ∈ R such that g(x) = ax + b

for all x ∈ U(O0,∼).

For any R ∈ L0\O0,∼ with R ≻ L1, let

g(U0(R)) = a
(

U0(R)− supS∈O0,∼
Uo(S)

)

+ supS∈O0,∼
g(U0(S)).

For any R ∈ L0\O0,∼, with L1 ≻ R, let

g(U0(R)) = a
(

U0(R)− infS∈O0,∼
Uo(S)

)

+ infS∈O0,∼
g(U0(S)).

Function g(·) is thus extended to U0(L0) in its entirety and is still affine with the

same scaling parameter a > 0 and translation parameter b.

5.3 Proof of Proposition 3

Proof. We first show that A5 implies A3*. Notice that when P,Q,R ∈ L0 or P,Q ∈ L1,

A3* coincides with A3. So we shall focus on the case P,Q ∈ L0 and R ∈ L1. Suppose

P,Q ∈ O0,∼ and take P ′, Q′ ∈ O1,∼ with P ∼ P ′ % Q ∼ Q′. We have

1

2
P ′ +

1

2
P %

1

2
Q′ +

1

2
P ∼

1

2
P ′ +

1

2
Q,

where the first part is by the linearity of % on L1 and the indifference part is by A5.

Therefore we have 1
2P + 1

2P
′ % 1

2Q + 1
2P

′. By the linearity of % on L1 again, we get

αP + (1− α)R % αQ+ (1− α)R for all a ∈ (0, 1) and R ∈ L1.

For general P,Q ∈ L0 with P % Q, fix S ∈ O0,∼ with U0(S) in the interior of the

interval U0(O0,∼). There exists β ∈ (0, 1) such that βP + (1− β)S and βQ+ (1− β)S are

in O0,∼ and βP + (1− β)S % βQ+ (1− β)S by the linearity of % on L0. Now we can use

the argument in the previous paragraph to conclude that, for all α ∈ (0, 1) and R ∈ L1,
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α(βP + (1− β)S) + (1− α)R % α(βQ+ (1− β)S) + (1− α)R, which can be re-written as

αβP + (1− αβ)

(

α− αβ

1− αβ
S +

1− α

1− αβ
R

)

% αβQ+ (1− αβ)

(

α− αβ

1− αβ
S +

1− α

1− αβ
R

)

.

As α−αβ
1−αβ S + 1−α

1−αβR ∈ L1, we have by the linearity of % on L1 that γP + (1 − γ)R %

γQ+ (1− γ)R for all γ ∈ (0, 1) and R ∈ L1.

Notice that, for the last two paragraphs, the conclusion will be indifference if P ∼ Q

and strict preference if P ≻ Q. A3* is thus established.

It remains to show that A5 implies A4. Take any P,Q ∈ O0,∼ and P ′, Q′ ∈ O1,∼ with

P ∼ P ′ % Q ∼ Q′. In the case of P ∼ Q, we have 1
2P + 1

2Q ∼ P ∼ P ′ ∼ 1
2P

′ + 1
2Q

′. If

P ≻ Q, by A2* there exists a unique β ∈ (0, 1) such that 1
2P + 1

2Q ∼ βP ′ + (1− β)Q′. By

A5 we have 1
2P + 1

2Q
′ ∼ 1

2P
′+ 1

2Q and also 1
2(

1
2P + 1

2Q)+ 1
2Q

′ ∼ 1
2(βP

′+(1−β)Q′)+ 1
2Q,

which by the linearity of % on L1 imply that U1(P ) − U1(Q) = U1(P
′) − U1(Q

′) and

U1(P )− U1(Q) = 2β(U1(P
′)− U1(Q

′)), respectively. Hence β can only be 1
2 .

5.4 Proof of Theorem 1

Proof. We focus on the sufficiency of the axioms, as their necessity is straightforward.

If O∼ is not nontrivial, then U0(O0,∼) is either empty or a singleton, and, by A3* and the

argument in part (1) of the proof of Proposition 2, we take U0 to be U1 restricted on L0. If

U(O0,∼) = ∅ and L0 ≻ L1, take any b > supU(L1)−infU(L1). If U0(O0,∼) = ∅ and L1 ≻ L0

take any b < infU(L1) − supU(L1). If U0(O0,∼) is a singleton, let b = U1(P
′) − U1(P ),

with (P,P ′) ∈ O∼.

Suppose that O∼ is nontrivial. A5 means that, for all P,R ∈ L0 and P ′, R′ ∈ L1

with P ∼ P ′ ≻ R ∼ R′, U1(
1
2P + 1

2R
′) = U1(

1
2P

′ + 1
2R). Since g(U0(P )) = U1(P

′) and

g(U0(R)) = U1(R
′), it follows that 1

2U1(P )+ 1
2g(U0(R)) = 1

2g(U0(P ))+ 1
2U1(R) and, hence,

g(U0(P )) − g(U0(R)) = U1(P ) − U1(R) for all P,R ∈ O0,∼. Thus, there exists b ∈ R such

that g(U0(P )) = U1(P ) + b for all P ∈ O0,∼. In particular, U1 represents % on O0,∼.

Since {P ∈ L0 : P ∈ O0,∼} contains an open set, U1 and U0 must be cardinally the

same on L0. We can hence take U0 to be U1 restricted on L0. And, for any R ∈ L0\O0,∼

let g(U0(R)) = U0(R) + b = U1(R) + b.

5.5 Proof of Proposition 4

Proof. Let Pu ∈ L0 denote the uniform distribution over X0. Notice that for any number a

in the interior of U0(O0,∼) and any number b in the interior of U1(O1,∼), there exist P ∈ L0,

Q ∈ L1, and α, β ∈ (0, 1) such that U0(αPu + (1− α)P ) = a and U1(βPu + (1− β)Q) = b.

This is true because we can pick any P ∈ L0 with U0(P ) < a if U0(Pu) > a, any P ∈ L0

with U0(P ) > a if U0(Pu) < a, and P = Pu if U0(Pu) = a. Similar arguments apply for

L1 except for U1(Pu) = b, in which case we just take any Q ∈ L1 with U1(Q) = b. Since
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αPu+(1−α)P = α′Pu+(1−α′)( 1−α
1−α′P + α−α′

1−α′ Pu) for all α′ ∈ (0, α) and a similar property

holds for β′ ∈ (0, β), we can assume that α = β without loss of generality.

By the above claim there exist P ∈ L0, Q ∈ L1, and α ∈ (0, 1) such that U(αPu + (1−

α)P ) is in the interior of U0(O0,∼) and αPu + (1 − α)P ∼ αPu + (1 − α)Q. Therefore by

A6 we have αR+ (1− α)P ∼ αR+ (1− α)Q for all R ∈ L0. In particular, we have

αR + (1− α)P % αR′ + (1− α)P ⇐⇒ αR + (1− α)Q % αR′ + (1− α)Q,

as the first lottery and the third lottery are indifferent and so are the second and the fourth.

Under intra-space independence, this implies that U0 and U1 are cardinally equivalent on

L0. This property obviously implies A3*.

For the rest of the proof, we use function U to denote both U0 and U1. For A4 and

A5, we shall show that the utility transformation g(·) between U on L0 and U on L1 is

a translation. The idea is to show that for each P ∈ O0,∼ with U(P ) in the interior of

U(O0,∼), g at a neighborhood of U(P ) is locally a translation. We then glue this local

property together to show that g is a translation on the whole domain U(O0,∼).

For any number a in the interior of U(O0,∼), take αaPu + (1−αa)P ∈ L0, αaPu + (1−

αa)Q ∈ L1, and αa ∈ (0, 1) with U(αaPu+(1−αa)P ) = a and U(αaPu+(1−αa)Q) = g(a).

Let Ha denote the convex interval αa (U(L0)− U(Pu)) excluding its boundary, which is

therefore open. By A6, we can conclude that

g(a+ b) = g(a) + b,∀b ∈ Ha.

That is, g is locally a translation of a + Ha to g(a) + Ha. Note that U(O0,∼) excluding

its boundary can be expressed as ∪∞
n=1Cn, where each Cn is a compact convex intervals

and Cn ⊂ Cn+1 for all n ≥ 1. Each Cn is covered by the open intervals {a + Ha}a∈Cn

and hence there exists a finite sub-cover {am +Ham}
Mn

m=1 with am < am+1 for all 1 ≤ m ≤

Mn−1. Since in this sub-cover any am+Ham has a nonempty intersection with some other

am′ +Ha
m′ , and the intersection itself is an open interval, it must be that g is a translation

on (am +Ham)∪ (am′ +Ha
m′ ). By induction on m, we can conclude that g is a translation

on Cn, and hence also on ∪∞
n=1Cn. Since g is continuous on U(O0,∼), we can conclude that

g is a translation on U(O0,∼). By construction we can also make g a translation on the

whole of U(L0).

5.6 Proof of Proposition 5

Proof. Since O∼ is nonempty, we have P ∼ Q for some P ∈ L0 and Q ∈ L1. By model

(2.2), we have U(P ) + b = U(Q). As αP + (1 − α)Q ∈ L1 for all α ∈ (0, 1), its evaluation

should be U(αP + (1−α)Q) = αU(P ) + (1−α)U(Q). By P ≻ αP + (1−α)Q, it must be

that U(P ) + b > αU(P ) + (1− α)U(Q) and hence b > (1− α)b for all α ∈ (0, 1), which is

true if and only if b > 0.
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5.7 Proof of Proposition 6

Proof. Assume that %1 is more inclined to zero-risk than %2. Since condition (i) of Def-

inition 3 states that %1 and %2 have the same ordering restricted to L1, it follows that

u1 ≈ u2. Without loss of generality, set u1 = u2 = u and assume that b1 and b2 refer to the

constants after normalization (so that %i is represented by (u, bi) for i = 1, 2). Since %2 has

a nonempty preference overlapping, there exist some P ∈ L0 and Q ∈ L1 such that P ∼2 Q.

By condition (ii) of Definition 3, we must that U(P ) + b2 = U(Q) and U(P ) + b1 ≥ U(Q),

and, hence b1 ≥ b2.

Conversely, assume that u1 ≈ u2 and that (u, bi) represents %i, for i = 1, 2, with b1 ≥ b2.

Then, %1 and %2 rank lotteries in L1 in the same way. Let P ∈ L0 and Q ∈ L1 be such

that P %2 Q. Then, U(P ) + b1 ≥ U(P ) + b2 ≥ U(Q), and, hence, P %1 Q.

5.8 Proof of Proposition 7

Proof. We shall focus on the sufficiency of the axioms, as their necessity is straightforward.

Under the same arguments as in Lemma 1, axioms A1, A2 (implied by A2*), and A3

together imply the existence of vNM utility u0 on X0 and u1 on X such that Ui represents

% on Li for i ∈ {0, 1}. Similarly, as in Proposition 3, A3* is implied by A5 when O∼ is

nontrivial, and it is otherwise directly assumed. This indicates that u1 and u0 can be chosen

to be the same on X0, which we shall do and denote it by a function u defined over X. If

the image u(X) is finite, we are essentially back to the case with finite X. We therefore

assume u(X) is infinite.

We first consider the case where O∼ is empty and hence either L0 ≻ L1 or L1 ≻ L0. It

is clear that an ascending (resp. descending) sequence of lotteries in L0 exists if and only

if u(X0) is unbounded from above (resp. below). And, by A3*, for any ascending (resp.

descending) sequence of lotteries in L0, we can mix them to a common outcome in X\X0

and get an ascending (resp. descending) sequence in L1. So, by Archimedeanity, u(X0)

has to be bounded, and, indeed, there are only three possible scenarios: u(X) is bounded,

or u(X0) is bounded but u(X) is unbounded from above but bounded from below with

L1 ≻ L0, or u(X0) is bounded but u(X) is unbounded from below but bounded from above

with L0 ≻ L1. In all three scenarios, we can find a number b to separate the two sets U(L0)

and U(L1) and therefore establish the model.

Suppose now that O∼ is nonempty. Let {x0l,n, x
0
h,n}

∞
n=1 ⊂ X0 and {x1l,n, x

1
h,n}

∞
n=1 ⊂

X\X0 be such that, first, xih,n+1 % xih,n % xil,n % xil,n+1 for all n ≥ 1 and i ∈ {0, 1},

second, limn→∞u(x0l,n) = infx∈X0
u(x), limn→∞u(x0h,n) = supx∈X0

u(x), limn→∞u(x1l,n) =

infx∈X\X0
u(x), and limn→∞u(x1h,n) = supx∈X\X0

u(x), and, third, if infx∈X0
u(x) is at-

tainable in X0, let x0l,n ∈ X0 for any n be an outcome that attains it, similarly we

take x0h,n ∈ X0 for supx∈X0
u(x), x1l,n ∈ X\X0 for infx∈X\X0

u(x), and x1h,n ∈ X\X0 for

supx∈X\X0
u(x), whenever possible. For all n, Proposition 2 is applicable to % restricted on

∆({x0h,n, x
0
l,n, x

1
h,n, x

1
l,n}), from which we obtain model (2.2) with some bn and the fixed U .
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We claim that, for all n, representation (2.2) with bn and U also works on ∆(Xn) where

Xn = {x ∈ X0 : x0h,n % x % x0l,n} ∪ {x ∈ X\X0 : x1h,n % x % x1l,n}. This is because, for

any lottery P ∈ ∆(Xn), we can replace any good outcome in its support by a lottery in

∆({x0h,n, x
0
l,n}) and any bad outcome by a lottery in ∆({x1h,n, x

1
l,n}), and hence we obtain

an indifferent (compound) lottery in ∆({x0h,n, x
0
l,n, x

1
h,n, x

1
l,n}) that does not change P ’s

zero-risk nature and utility according to U .

For any n such that % restricted on ∆({x0h,n, x
0
l,n, x

1
h,n, x

1
l,n}) has a nonempty preference

overlapping, we must have bn = bm for all m ≥ n. This is due to the uniqueness property

of parameter b and the fact that the model on ∆(Xm) also works on ∆(Xn) as Xn ⊂ Xm.

For the final unified model, we hence set its parameter b to a bn, as long as the preference

overlapping on ∆({x0h,n, x
0
l,n, x

1
h,n, x

1
l,n}) is nonempty. Finally, since every lottery in ∆0(X)

is in all ∆(Xn) with large enough n, the unified model works on the whole ∆0(X).

5.9 Proof of Theorem 2

We start with a few preliminary lemmas that will be useful to prove Theorem 2.

Lemma 3. There is a linear vNM utility U on ∆(X), such that, for all I ⊂ K, % restricted

on LI can be represented by U .

Proof. By Herstein and Milnor (1953), the intra-comparison axioms imply the existence of

linear utility UI on LI for all I ⊂ K. MP2 (Restricted Independence) indicates that UK

agrees with UI on LI for all I ⊂ K. Hence we simply can use UK for the role of U .

For the rest of the proof, we shall often refer to the function U characterized in the last

lemma.

Lemma 4. For all I, I ′ ⊂ K there exists a bII′ ∈ R such that U + bII′ on LI and U on

LI′ jointly represent % on LI ∪ LI′.

Proof. Following the same arguments presented in the proof of Proposition 1, MP1 (Re-

stricted Continuity) can be shown to imply that, for all I, I ′ ⊂ K, there exists a continuous

strictly increasing function gII′ : U(LI) → R such that gII′ ◦U on LI and U on LI′ jointly

represent % on LI ∪ LI′.

If OII′ = ∅, we can set bII′ to be any number strictly larger than supU(LI′)−infU(LI)

if LI ≻ LI′ , and, we can take bII′ to be any number strictly smaller than infU(LI′) −

supU(LI) if LI′ ≻ LI .

If OII′ 6= ∅ but P ∼ Q for all (P,P ′), (Q,Q′) ∈ OII′ , it must be that U(P ′)− U(P ) =

U(Q′)−U(Q). In this case, we can fix a pair (P,P ′) ∈ OII′ and set bII′ = U(P ′)−U(P ).

Notice that by construction bII′ is also equal to supU(LI′)− infU(LI) if P ≻ LI′ for some

P ∈ LI , and, it is equal to infU(LI′)− supU(LI) if P ′ ≻ LI for some P ′ ∈ LI′ .

Finally, suppose that OII′ 6= ∅ and P ≻ Q for some (P,P ′), (Q,Q′) ∈ OII′ . Let

OI = {P ∈ LI : (P,P ′) ∈ OII′}} denote the subset of LI that has preference overlapping
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with LI′ , and OI′ is similarly defined. We shall show that gII′ is a translation on U(OI)

which implies that gII′ on its entire domain can be defined as a translation.

Let Pu ∈ L∅ denote the uniform distribution over X0. For any number a in the interior

of U(OI) and any number b in the interior of U(OI′), there exist P ∈ LI , Q ∈ LI′ ,

and α, β ∈ (0, 1) such that UI(αPu + (1 − α)P ) = a and UI′(βPu + (1 − β)Q) = b.

Without loss of generality we can assume α = β. For any number a in the interior of

U(OI), take αaPu + (1 − αa)P ∈ LI , αaPu + (1 − αa)Q ∈ LI′ , and αa ∈ (0, 1) with

U(αaPu + (1 − αa)P ) = a and U(αaPu + (1 − αa)Q) = gII′(a). Let Ha denote the open

convex interval αa (U(L∅)− U(Pu)) excluding the boundary. By MP3 (L∅-Cancellation),

we can conclude that

gII′(a+ b) = gII′(a) + b,∀b ∈ Ha.

That is, gII′ is locally a translation of a+Ha to gII′(a) +Ha. Since U(OI) excluding its

boundary can be expressed as ∪∞
n=1Cn, where each Cn is a compact convex interval and

Cn ⊂ Cn+1 for all n ≥ 1. Each Cn is covered by the open intervals {a+Ha}a∈Cn
and hence

there exists a finite sub-cover {am+Ham}
Mn

m=1 with am < am+1 for all 1 ≤ m ≤ Mn−1. Since

in this sub-cover any am +Ham has a nonempty intersection with some other am′ +Ha
m′ ,

and the intersection itself is an open interval, it must be that gII′ is a translation on

(am +Ham)∪ (am′ +Ha
m′ ). By inducting on m, we can conclude that gII′ is a translation

on Cn, and hence also on ∪∞
n=1Cn. Since gII′ is continuous on U(OI), we can conclude

that g is a translation on U(OI). By construction we can also make g a translation on the

whole U(LI).

Lemma 5. For any S ⊂ 2K, if {LI}I∈S is connected, then there exist a set of real numbers

{bI}I∈S such that {U+bI}I∈S jointly represent % on ∪I∈SLI . Moreover, given U , {bI}I∈S

is unique up to (constant) translations.

Proof. We shall call any LI a segment and a set of segments a stream. For any segment

LI , the right stream of LI refers to the set {LI′ ∈ {LI}I∈S : ∃P ′ ∈ LI′ , P ′ ≻ LI ;∄Q
′ ∈

LI′ , LI ≻ Q′} and the left stream of LI refers to the set {LI′ ∈ {LI}I∈S : ∃P ′ ∈ LI′ , LI ≻

P ′;∄Q′ ∈ LI′ , Q′ ≻ LI}.

Fix an I0 ∈ S such that there is no LI with P,Q ∈ LI such that P ≻ LI0 ≻ Q. Let

O(0) = {LI0} and, for all n ≥ 1, let O(n) ⊂ {LI}I∈S denote the collection of segments

connected to some segment in O(n−1) that are not in ∪n−1
k=0O

(k). Every LI ∈ {LI}I∈S is in

O(n) for some n. The reason is that, by the connectedness of {LI}I∈S, there is a connected

sequence {LI(n)}
N
n=1 starting from LI0 and ending with LI . If N = 1, LI = LI0 ∈ O(0),

and, if N = 2, LI ∈ O(1). For length N = n, we can suppose that LI(n−1) ∈ O(m) for some

m ≤ n−2. By construction any segment that is connected to some segment in O(m) should

be in O(m−1) ∪ O(m) ∪O(m+1), hence it must be that LI(n) ∈ O(m−1) ∪O(m) ∪ O(m+1).

We now state, and shortly prove some structural properties of the O(n)’s.

Property O1 : Consider any connected sequence {LI(n)}
N
n=1 with LI(n) ∈ O(n−1), 1 ≤
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n ≤ N . If LI(2) is in the right stream of LI(1), then LI(n) is in the right stream of LI(n−1)

for all 3 ≤ n ≤ N −1, while, if LI(2) is in the left stream of LI(1), LI(n) is in the left stream

of LI(n−1) for all 3 ≤ n ≤ N − 1.

Property O2.1 : For every O(n) with n ≥ 0, there exists an Ll,n ∈ O(n), which we shall

call the left reach of O(n), and an Lr,n ∈ O(n), the right reach of O(n), such that every

LI ∈ O(n+1) in the left stream of LI0 is connected to Ll,n and every LI ∈ O(n+1) in the

right stream of LI0 is connected to Lr,n.

Property O2.2 : For every O(n) with n ≥ 0, and any two LI , LI′ ∈ O(n) that are

connected to some segments in O(n+1), if both LI and LI′ are in the right stream of LI0

or in the left stream of LI0 , then they are connected and one of them is connected to a

(weakly) larger set of segments in O(n+1).

Proof of O1 : We assume N ≥ 4 for the claim to have any bite. Notice that LI(1) = LI0

by construction and, as long as N ≥ 3, LI(2) has to be in either the left or the right

stream of LI(1). We prove by induction starting with n = 3 and suppose LI(2) is in the

right stream of LI(1). If U(LI(3)) + bI(3)I(2) is contained in U(LI(2)), every segment that

overlaps with LI(3) would also overlap with LI(2), which implies that LI(4) should be in

O(2) as opposed to O(3), a contradiction. If U(LI(3)) + bI(3)I(2) contains U(LI(2)) or LI(3)

is in the left stream of LI(2), then LI(3) would overlap with LI(1) and hence it would be in

O(1), contradicting LI(3) ∈ O(2). So, LI(3) can only be in the right stream of LI(2). Similar

arguments apply for the nth step, given LI(n−1) is in the right stream of LI(n−2). The case

of LI(2) being in the left stream of LI(1) is similar. Notice that the claim excludes n = N

because U(LI(N))+ bI(N)I(N−1) could be contained in U(LI(N−1)) (and hence LI(N) is not

connected to any segment in O(N)).

Proof of O2.1 and O2.2 : The two properties shall be proved by induction, using O2.1

of step n − 1 to prove O2.2 of step n, which is then further used to prove O2.1 of step n.

For n = 0, O(0) is a singleton and the two properties hold trivially with Ll,0 = Lr,0 = LI0 .

Assume the two properties for step n − 1 and consider any two LI , LI′ ∈ O(n) that are

connected to some segments in O(n+1). If they are in the right stream of LI0 , then by

property O2.1 of step n− 1 they are connected to Lr,n−1 and by property O1 they are also

in the right stream of Lr,n−1. Hence they have to be connected and the one that reaches

further to the right (i.e., it is LI if there is a P ∈ LI with P ≻ LI′ , and, both shall work if

they have the same reach to the right) is connected to a larger set of segments in O(n+1).

The right reach Lr,n can be found out by repeatedly using O2.2 of step n to compare pairs

of segments in O(n) that are connected to some segments in O(n+1) and are also in the right

stream of LI0 , picking the one that reaches further to the right in each round of comparison.

The left reach Ll,n can be identified analogously.

We now establish a 3-segment property and a 4-segment property that are useful in

identifying {bI}I∈S. The 3-segment property is that, if three segments LI , LJ , LH are

pairwise connected, then bIH = bIJ + bJH. Pairwise connectedness implies that there
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must exist P ∈ LI , Q ∈ LJ , R ∈ LH with P ∼ Q ∼ R, which indicates that U(P ) + bIH =

U(R), U(P ) + bIJ = U(Q), U(Q) + bJH = U(R), and hence bIH = bIJ + bJH. The

4-segment property is that, if LI1 , LI2 , LI′
2

are pairwise connected and LI2 , LI′
2
, LI3 are

pairwise connected, then bI1I2 + bI2I3 = bI1I′
2
+ bI′

2
I3 . The 3-segment property implies that

bI1I′
2
+ bI′

2
I2 = bI1I2 and bI′

2
I3 = bI′

2
I2 + bI2I3 , which by adding up the two equations imply

bI1I2 + bI2I3 = bI1I′
2
+ bI′

2
I3 .

The set {bI}I∈S is defined as follows. Let bI0 = 0. For any LI ∈ O(N), let bI =
∑N

n=1 bI(n+1)I(n), where {LI(n)}
N+1
n=1 is a connected sequence with LI(1) = LI0 , LI(N+1) =

LI , and LI(n) ∈ O(n−1), 1 ≤ n ≤ N + 1. For it to be a valid definition, we claim

that if two such connected sequences {LI(n)}
N+1
n=1 and {LI′(n)}

N+1
n=1 exist, it must be that

∑N
n=1 bI(n+1)I(n) =

∑N
n=1 bI′(n+1)I′(n). Since LI(N+1) = LI′(N+1) = LI and by property

O2.2, LI(N) and LI′(N) must be connected and they are both connected to one of LI(N−1)

and LI′(N−1), which we without loss of generality take to be LI(N−1). The 4-segment

property leads to bI′(N+1)I′(N) + bI′(N)I(N−1) = bI(N+1)I(N) + bI(N)I(N−1) and hence we

only need to show bI′(N)I(N−1) +
∑N−2

n=1 bI(n+1)I(n) =
∑N−1

n=1 bI′(n+1)I′(n), that is, the two

sequences can be thought to be one segment shorter, as the original final segment LI(N+1) =

LI′(N+1) = LI is now replaced by LI′(N). We can repeat this process till N = 2, for which

using the 4-segment property once more delivers the claim. Set {bI}I∈S is unique under

bI0 = 0 because bIJ is unique given U for all I,J ∈ S, and, in general, the set is unique

up to a constant translation given U .

We claim that {U + bI}I∈S jointly represent % on ∪I∈SLI . For all LI , LJ ∈ {LI}I∈S

that are connected, they are in either the same O(n) or some consecutive O(n) and O(n+1),

and, we need to show bI − bJ = bIJ . If LI ∈ O(n) and LJ ∈ O(n+1) for some n,

property O2.1 implies the existence of a sequence {LI(n)}
N+1
n=1 with LI(1) = LI0 , LI(N) =

LI , LI(N+1) = LJ , and LI(n) ∈ O(n−1) for all 1 ≤ n ≤ N + 1, which directly implies

bJ = bI + bJ I (and hence bI − bJ = bIJ ). If LI , LJ ∈ O(n), then property O2.1 implies

the existence of a LH ∈ O(n−1) that is connected to both LI and LJ . Because property

O2.1 also implies the existence of a sequence {LI(n)}
N+1
n=1 with LI(1) = LI0 , LI(N) = LH,

LI(N+1) = LI , and LI(n) ∈ O(n−1) for all 1 ≤ n ≤ N + 1, it must be that bI = bH + bIH.

Similarly, it must be bJ = bH + bJH. By taking difference of the two equations we get

bI − bJ = bIH − bJH, which by the 3-segment property implies bI − bJ = bIJ . For all

LI , LJ ∈ {LI}I∈S that are not connected, there is a sequence starting with LI , ending with

LJ , and any two segments in the sequence are connected if and only if they are consecutive.

The linear structure and the result on connected segments imply that U + bI on LI and

U + bJ on LJ jointly represent % on LI ∪ LJ .

We can now establish Theorem 2.

Proof. The whole collection {LI}I⊂K can be partitioned into {{LI}I∈Sn}
N
n=1, where, for

each n, {LI}I∈Sn is a collection of connected segments and, for all n 6= m, every segment in
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{LI}I∈Sn is not connected to any segment in {LJ }J∈Sm . For all n 6= m, LI ∈ {LI}I∈Sn ,

and LJ ∈ {LJ }J∈Sm , LI ≻ LJ implies LI ≻ LJ ′ for all LJ ′ ∈ {LJ }J∈Sm that is connected

to LJ . Using this property throughout {LJ }J∈Sm , we can conclude that LI ≻ {LJ }J∈Sm ,

and then using it throughout {LI}I∈Sn we get {LI}I∈Sn ≻ {LJ }J∈Sm . Therefore, we can

without loss of generality assume that {LI}I∈Sn+1
≻ {LI}I∈Sn for all 1 ≤ n ≤ N − 1.

For each Sn, we obtain {U + b′I}I∈Sn that jointly represent % on ∪I∈SnLI . Let gn be any

number strictly larger than sup∪I∈Sn (U(LI)+b′I)− inf ∪I∈Sn+1
(U(LI)+b′I), which is the

minimum utility gap between Sn and Sn+1, 1 ≤ n ≤ N − 1. For the unified representation,

let bI = b′I +
∑n−1

m=1 gm if I ∈ Sn.

5.10 Proof of Proposition 8

Proof. The necessity of the additivity condition is obvious. For sufficiency, we shall show

that bI∪I′ = bI + bI′ for all disjoint I,I ′ ⊂ K. By connectedness there exists a sequence

{LI(n)}
N1

n=1 with LI(1) = LI , LI(N1) = LI∪I′, and LI(n) is connected to LI(n+1), 1 ≤ n ≤

N1 − 1. As LI(n) is connected to LI(n+1), there exist Pn ∈ LI(n) and Qn ∈ LI(n+1) with

Pn ∼ Qn, for all 1 ≤ n ≤ N1 − 1. Similarly, there exists a sequence {LI′(n)}
N2

n=1 that

connects LI′ to LI∅, with P ′
n ∈ LI′(n) and Q′

n ∈ LI′(n+1) such that P ′
n ∼ Q′

n, for all

1 ≤ n ≤ N2 − 1.

Consider (Pn, Qn)
N1−1
n=1 and (P ′

n, Q
′
n)

N2−1
n=1 as a whole finite collection of indifferences.

Notice that every I(n) or I ′(n) appears twice in the collection, once on the left “P ” lottery

side and once on the right “Q” lottery side, except that, I appears only once, as P1 ∈ LI

on the left, I ′ appears once, as P ′
1 ∈ LI′ on the left, I ∪I ′ appears once, as QN1−1 ∈ LI∪I′

on the right, and, ∅ appears once, as Q′
N2−1 ∈ L∅ on the right. Formally, we have

N1−1
∑

n=1

1I(n) +

N2−1
∑

n=1

1I′(n) =

N1
∑

n=2

1I(n) +

N2
∑

n=2

1I′(n). (5.1)

Additivity is hence applicable and it delivers the indifference between lottery

N1−1
∑

n=1

1

N1 +N2 − 2
Pn +

N2−1
∑

n=1

1

N1 +N2 − 2
P ′
n

and lottery
N1−1
∑

n=1

1

N1 +N2 − 2
Qn +

N2−1
∑

n=1

1

N1 +N2 − 2
Q′

n.

The two lotteries violate the same set of principles
(

∪N1

n=1I(n)
)

∪
(

∪N2

n=1I
′(n)

)

, implied by

Equation 5.1. Hence the indifference translates into

N1−1
∑

n=1

U(Pn) +

N2−1
∑

n=1

U(P ′
n) =

N1−1
∑

n=1

U(Qn) +

N2−1
∑

n=1

U(Q′
n)
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in utility terms. This, along with the collection of indifferences, imply

N1−1
∑

n=1

bIn +

N2−1
∑

n=1

bI′
n
=

N1
∑

n=2

bIn +

N2
∑

n=2

bI′
n
,

which, after cancellation of common terms, yields bI∪I′ = bI + bI′ .
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