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Abstract

Consumption decisions are partly influenced by values and ideologies. Consumers

care about global warming, child labor, fair trade, etc. We develop an axiomatic model

of intrinsic values – those that are carriers of meaning in and of themselves – and

argue that they often introduce discontinuities near zero. For example, a vegetarian’s

preferences would be discontinuous near zero amount of animal meat. We distinguish

intrinsic values from instrumental ones, which are means rather than ends and serve

as proxies for intrinsic values. We illustrate the relevance of our value-based model in

different contexts, including equity concerns and prosocial behavior.

1 Introduction

In November 2015 Volkswagen sales in the US were about 25% lower than the year be-

fore. This dramatic drop followed a notice by the United States Environmental Protection

Agency about the car manufacturer’s violation of the Clean Air Act. It stands to reason

that consumers were reacting to the facts that Volkswagen was selling cars that polluted
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the air beyond the allowed limits, and was also deceitful about it. These consumption

choices were, at least partly, determined by values that were compromised by the firm’s

conduct: minimizing pollution and being honest.

Along similar lines, Nike has been struggling with information and rumors about its

production practices for decades. In the 1990s it was reported that the company had been

using sweatshops and child labor. Nike made a major effort to clean up its image, in an

attempt to avoid the negative impact on sales. Analogously to the Volkswagen’s case,

Nike’s behavior had to do with what consumers perceived as the right choice: using child

labor is considered immoral.1

These are but two examples in which consumers care not only about the product they

get for their money, but also about values, and, in particular, about potential conflict

between their consumption and values they hold. Many consumption decisions are affected

by the degree to which the production and/or the consumption processes hurt wildlife

and endangered species, the globe and sustainability of life on it, or help underprivileged

populations, promote equality, and so forth. For example, De Pelsmacker, Driesen, and

Rayp (2005) found that consumers expressed a higher willingness to pay for coffee that was

labeled “Fair Trade”, while Hainmueller, Hiscox, and Sequeira (2015) showed that the label

increased market share in a field experiment. Such ethical concerns affect firms’ decisions

as well as their profitability (see, e.g., Servaes and Tamayo, 2013). Indeed, the concept of

Corporate Social Responsibility (CSR) might be partly a response to consumers’ demand

for values.2

This paper develops an axiomatic model of consumer choice where consumers derive

utility not only from material bundles, but also from values. Specifically, we focus on

principles, which are to be thought of as binary values: they are either respected or violated.

Incorporating principles (and, more generally, values) into the consumer’s utility function

calls into question basic properties of consumer preferences: continuity and monotonicity.

The following three examples shed light on these key aspects.

Example 1 : Mary declares she is vegetarian. It is a matter of principle for her not

to consume animals’ meat. The amount of meat used in a product is immaterial to her;

the very fact that it exists at a positive level is distinctly different from non-existence.

1Nike argued that it had no control over the practices employed by its sub-contractors. We make no
claim about Nike’s actual conduct in this case, nor about Volkswagen’s in the previous one. We only point
out that consumers seem to care about values, and perceived disrespect for values can affect consumption
choices.

2See Garriga and Mele (2004) for a survey of CSR theories.
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Obviously, she cannot tell whether a dish contains a minuscule amount of meat, but she

attaches meaning to the act of consumption, and knowing that the dish contains some

positive amount is sufficient to change the meaning of consumption.

Meaning introduces discontinuity at zero quantity, as well as violations of monotonicity

since increasing the amount of meat in Mary’s bundle will lower her utility. Such preferences

can be captured by maximization of

U (x) =
⎧⎪⎪
⎨
⎪⎪⎩

u (x) x is vegetarian

u (x) − γ otherwise
(1)

where u (x) is a continuous function that measures the consumer’s hedonic utility, and

γ > 0 measures the degree to which she cares about vegetarianism. When γ is moderately

large, maximization of U can capture the behavior of a vegetarian who would consume

meat rather than die of hunger, but who would not do so for the sake of sheer pleasure.

Example 2 : John writes his will, leaving his estate to his two children. He would like

each of the children to have as much property as possible, but it is also important to

him to have an equal division between them. This requires selling some assets, incurring

transaction costs. John tells his lawyer that, as long as the costs do not exceed 5% of the

estate, he prefers to incur them for the sake of an equal division.

John’s preferences also exhibit discontinuity along a specific subspace: if we denote the

two children’s shares of the estate by (y1, y2) ∈ [0,1]2, John assigns a special value to the

subspace y1 = y2. Moreover, he might prefer the point (0.48,0.48) to (0.49,0.51), violating
monotonicity. We can capture his preferences for equality by the function

U (y1, y2) =
⎧⎪⎪⎨⎪⎪⎩

u (y1, y2) y1 = y2

u (y1, y2) − γ otherwise
(2)

where u (y1, y2) is a continuous symmetric function and γ > 0 is the weight attached to the

principle of equality.3

Example 3 (Gneezy and Rustichini, 2000a, 2000b): A school faces a problem: some

parents are consistently late in picking up their children at the end of the day. In an attempt

to deal with this issue, the school decides to impose a small fine on latecomers, and it turns

out that the number of late parents unexpectedly grows larger. The explanation suggested

3While Ben-Porath and Gilboa (1994) and Fehr and Schmidt (1999) treat inequality continuously, the
present formulation allows for discontinuity, conceptualizing equality as an intrinsic principle.
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by Gneezy and Rustichini is that the fine allowed parents to be late without feeling guilty

about it: once the fine is instated, it becomes a price; the school’s after-duty services turn

into a tradable good. Importantly, any positive amount of money can relieve a parent from

guilt feelings, because any such amount would change the meaning of being late. Formally,

if we denote by t ≥ 0 the duration of the delay and by m ≥ 0 – the fine paid, we can think

of the parent as maximizing a utility function

U(t,m) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(t,0) − g(t) m = 0

u(t,m) m > 0
(3)

The function u(t,m) is a continuous function that measures the parent’s hedonic well-

being, irrespective of potential guilt feelings. If the parent values both flexibility and

money, u(t,m) would be increasing in t and decreasing in m. The function g(t) measures

the extent of guilt, and we may assume that it is increasing in t, with g(0) = 0. When a fine

m > 0 is imposed, guilt disappears, and g(t) is not deducted from u(t,m). Consider t with
g (t) > 0. For m↘ 0, we have U(t,m) → u(t,0) > U(t,0), violating continuity; further, for

a small m > 0, U(t,m) > U(t,0), violating monotonicity. Consequently, when the fine m is

small, some parents may find it optimal to be late by some t > 0, even if they weren’t late

when there was no fine (m = 0), due to the emotional cost g (t) > 0. The school’s optimal

policy should therefore be either to impose a large enough fine or not at all.4

These examples involve agents who wish to abide by a certain principle (vegetarianism,

equity, being on time and/or not to burden other people, respectively), and, as a result, they

exhibit violations of monotonicity and of continuity. To understand why, let us go back to

the standard justifications of these assumptions. The standard rationale for monotonicity

is free disposal: a consumer need not physically consume products that she legally owns.

But in the presence of values free disposal no longer holds. A person might feel guilty

about the degree to which the bundle she owns hurts certain causes. Because there is no

free disposal of emotions, preferences need not be monotone.5

4Note that our scope here is to show how our value-based approach can account for the discontinuities
patterns observed in the motivation crowding-out literature. The guilt function g(t) does not need to be
discontinuous at t = 0. We refer to Noor and Ren (2023) for a model of guilt with continuous utilities in a
menu-choice setup.

5One may argue that a principle is, by definition, something for which the agent is willing to give up
hedonic well-being. This, however, does not necessarily imply violation of monotonicity, because an increase
in consumption quantities x may lead to an increase in hedonic well-being (u (x)) that is enough to offset
the negative impact this consumption has on principles.
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The standard justification of continuity is human physiology: minuscule amounts can-

not be discerned by our senses and therefore cannot have a noticeable effect on choices.

However, when principles are concerned, the meaning of choice introduces discontinuity.

Clearly, agents need to be aware of the quantities involved: Mary is assumed to know if

a dish contains meat, John explicitly writes the proportions of the estates he bequeaths,

the parent is aware of having to pay a fine. Given such awareness, discontinuity may arise

from the assignment of meaning to numerical quantities.

Weber (1922) distinguished between intrinsic values, which are carriers of meaning in

and of themselves, and instrumental values, which attain meaning only via some other

mechanism that affects intrinsic values. Consider, for example, minimizing carbon diox-

ide emissions. Most consumers do not attach any deep meaning to the location of CO2

molecules in the atmosphere in and of itself. But emission causes global warming, which,

in turn, reduces people’s well-being in many ways, and the latter is something that people

care about intrinsically. Thus, minimizing emissions is an instrumental value: it needs to

set in motion some mechanism in order to attain meaning. Because such a mechanism

tends to be continuous, we believe that intrinsic values are more likely to give rise to dis-

continuities than are instrumental values.6 Be that as it may, we are interested in values

that result in discontinuity of preferences.

We focus on the simplest model of intrinsic principles and provide an axiomatic deriva-

tion of consumer preferences that can be described by a function U as in (1), (2), and

(3). From a theoretical viewpoint, the axiomatic foundation helps us determine the most

appropriate functional form in order to model the discontinuity introduced by an intrinsic

principle. From an empirical/experimental viewpoint, our model can be utilized to test

whether a consumer wishes to abide by a certain principle and whether such a principle is

subjectively perceived as intrinsic or not.

The axiomatization of preferences as in (1), (2), and (3) is provided in Section 2. It

turns out that (with only one principle), little needs to be assumed to obtain this addi-

tively separable representation, and, somewhat surprisingly, we find a unifying behavioral

foundation for seemingly different phenomena. A survey of related literature is provided in

Section 3. Section 4 concludes with a discussion about some useful extensions of our model.

All proofs are contained in the Appendix. An Online Appendix contains an auxiliary result

and examples proving the independence of our key axioms.

6One may consider models of intrinsic values that are continuous in quantities, as in Benabou and Tirole
(2003, 2006).
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2 The Model

2.1 Set-up

The alternatives are consumption bundles in X, which is a closed and convex subset of Rn
+.

For each good i ≤ n there is an indicator di ∈ {0,1} denoting whether the good violates

the principle. That is, di = 1 implies that the good is inconsistent with the principle (say,

contains meat), and di = 0 – that it doesn’t (purely vegetarian). The consumer is aware of

the vector d ∈ {0,1}n, where we assume that producers should and do truthfully disclose

the ingredients of their products. Thus, we assume that d is observable and verifiable, both

to the consumer and to an outside observer.7

We wish to axiomatize the model in which, given d, the consumer maximizes U (x) =
u (x) − γ1{d⋅x>0}where d ⋅ x is the inner product of the two vectors, so that d ⋅ x > 0 if and

only if there exists a product i that violates the principle (di = 1) and that is consumed at

a positive quantity in x.

In this paper we assume that the vector d is known and kept fixed. That is, the

consumer is provided with information about the goods that are and are not vegetarian,

and we implicitly assume that this information is trusted.8 We keep the information

fixed, and can therefore suppress d from the notation, assuming that a binary relation

≿d=≿⊂ X ×X is observable. The information contained in the vector d is summarized by

the answer to the question, is d ⋅x > 0 ? We thus define X0 = {x ∈ X ∣d ⋅ x = 0}, that is, all
consumption bundles that do not use any positive amount of the “forbidden” goods, while

X1 =X/X0 = {x ∈ X ∣d ⋅ x > 0} contains the other bundles. Observe that X0 is closed and

convex and X1 is convex.

Before moving on, we introduce some notation. The term “a sequence (xn)n≥1 →n→∞ x”

will refer to a sequence (xn)n≥1 such that xn ∈ X for all n, and xn →n→∞ x in the standard

topology, where x ∈ X. When no ambiguity is involved, we will omit the index notation

“n→∞” as well as the subscript “n ≥ 1”. We will use the notation “a sequence (xn) ⊂ A”
for “a sequence (xn)n≥1 such that {xn}n≥1 ⊂ A”. Conditions that involve an unspecified

7One may consider a model in which the vector d is not observable, but rather inferred from choice. For
example, we may assume that violations of monotonicity can only be caused by value considerations, and
identify the case di = 1 if there is an instance of preferences of a bundle with xi = 0 to the same bundle with
xi > 0.

8One may extend the model to allow for the possibility that d is not reported. This can capture a wider
range of phenomena. For example, an agent who is about to take a flight might not be thinking about its
environmental effects. Once airlines start reporting the environmental damage per flight (di) – the agent
may suddenly be aware of the value-effect of her consumption decisions, and perhaps change them.
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index such as xn ≿ yn are understood to use a universal quantifier (“for all n ≥ 1”). Finally,

when no confusion is likely to arise we will also omit the parentheses and use xn → x rather

than (xn)→ x.

2.2 Axioms

We impose the following axioms on ≿. We start with the standard assumption positing

that choice behavior is described by a complete preorder.

A1. Weak Order: ≿ is complete and transitive on X.

The next axioms will make use of the following key notion:

Definition 1 Two sequences xn → x and yn → y are comparable if

(A) there exist i, j ∈ {0,1} such that (xn) ⊂Xi, x ∈ Xi and (yn) ⊂Xj , y ∈ Xj

or

(B) there exist i, j ∈ {0,1} such that (xn) , (yn) ⊂Xi and x, y ∈ Xj .

Clearly, if all of the elements of (xn) , (yn), as well as the limit point of each are in

the same subspace – X0 or X1 – the sequences are comparable.9 However, two sequences

xn → x and yn → y are comparable also in two other cases: first, (A) if (xn) as well as

its limit x are all in one subspace, while (yn) with its limit, y, are all in another. And,

second, (B) if the elements of both sequences belong to X1 and the limits of both belong

to X0. (In principle, the opposite is also allowed by the definition, but X0 is closed, so we

cannot have a sequence in it converging to a point in X1.) Basically, comparability rules

out cases in which the transition to the limit makes only one sequence cross the boundary

between the subspaces, leaving X1 and reaching X0. If this occurs, then the information

we gather from preferences along the sequences is not very useful for making inferences

about the limits: one sequence changes in a way that is discontinuous, and the other one

doesn’t. (See Fig. 1.)

By contrast, if the two sequences are comparable because none of them crosses the

boundary between the two subspaces, then there is no reason for any violation of continuity.

And, importantly, if both do cross the boundary, we still expect preference information

along the sequences (where both (xn) and (yn) are in one subspace, which can only be X1

in this case) to carry over to the limits (even though these are located in another subspace).

We can now state our continuity axiom:

9Here and in the sequel we use the terms “space” and “subspace” in the topological sense.
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X0

X1

x

y

xn

yn

Figure 1: The comparability
notion rules out this case.

A2. Weak Preference Continuity: For all comparable sequences xn → x and yn → y,

if xn ≿ yn for all n, then x ≿ y.

Observe that, without the comparability condition, A2 would be a standard, though

rather strong axiom of continuity: it would simply say that the graph of the relation ≿ is

closed in X ×X. This axiom is stronger than the standard continuity axiom of consumer

choice, though it is implied by it when the relation ≿ is also known to be a weak order. In

our case, however, the consequent of the axiom is only required to hold if the sequences

are comparable. As explained above, xn ≿ yn for all n may not imply x ≿ y (in the limit)

if, for example, y is the only element involved that is in X0; in this case it can enjoy the

extra utility derived from obeying the principle, and thus y ≻ x can occur at the limit with

no hint of this preference emerging along the sequence.

Clearly, if we restrict attention to one subspace, that is, if all of (xn), (yn), x, y are

in X1 or if all of them are in X0, we obtain a standard continuity condition. Indeed, this

would suffice to represent ≿ on X0 by a continuous utility function u0 and to represent it

on X1 by a continuous utility function u1, where u0 and u1 (having disjoint domains) need

not have anything in common.

While A2 deals with weak preferences that are carried over to the limit, we will also

need a corresponding axiom for strict preferences:

A3. Strict Preference Continuity: For all comparable sequences xn → x and yn → y,

and all z,w ∈ X, if xn ≿ z ≻ w ≿ yn for all n, then x ≻ y.

To see the meaning of this axiom, assume, again, that comparability were not required.

In this case, xn ≿ z and w ≿ yn would imply x ≿ z and w ≿ y, respectively, and from z ≻ w

we would easily conclude x ≻ y. In our case, however, we could have that (xn) ⊂ X1 and
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x ∈ X0, and thus we cannot conclude that x ≿ z (and, naturally, the same holds for w

and y). Yet, comparability of xn → x and yn → y suffices to conclude that the preference

gap between z and w is indeed enough to guarantee a strict preference between x and

y. It is worthy of note that our A3 implies the “Cauchy continuity” property as defined

in Kopylov (2016) in the context of providing extension results of continuous preference

representations.10

Next, we introduce an Archimedean axiom stating that the “cost” of the principle in

terms of utility is strictly positive, and, moreover, that no utility difference over X0 exceeds

infinitely many such “costs”. Specifically, consider a sequence (zn) ⊂X1 that converges to

a point z ∈ X0. In terms of hedonic utility, the bundles zn become practically indistinguish-

able from z. However, the fact that z satisfies the principle means that its overall utility

is higher than the limit of the corresponding utility values along the sequence. Intuitively,

reaching X0 at the limit provides an extra utility boost, which is not captured by the

(continuous) hedonic utility, but should be captured in our overall-utility representation.

One way to see this in terms of preferences is the following: if, along the sequence, zn ∼ y ∈

X0, then we should have strict preference at the limit, z ≻ y. In this case, the (hedonic)

utility gap between z and y is a measure of the contribution of the principle to overall

utility. The axiom states that, when aggregated, these measures are large enough to cover

the entire utility range over X.

X0

X1

zk

xk zkn

xk+1

zk+1

xk+2

zk+1n

Figure 2: An illustration of A4

That is, an infinite chain of such preference gaps in X0—as shown in Fig. 2, xk ≻ xk+1 ≻

10This condition is weaker than our A3, and it is not sufficient to derive our desired result. See the Online
Appendix for further discussion.
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xk+2 ≻ . . .— cannot be bounded above or below by some bundle x̂ (otherwise x̂ would take

an infinite utility value).

Explicitly,

A4 Archimedeanity: Let (xk, zk) ⊂X0 and (zkn)n,k≥1 ⊂X1 be such that (i) zkn → zk, (ii)

xk ≿ zk and (iii) zkn ≿ x
k+1 for all k ≥ 1 (zkn ≿ x

k−1 for k ≥ 2) and for all n ≥ 1. Then there

does not exist x̂ ∈ X such that xk ≿ x̂ (x̂ ≿ xk) for all k ≥ 1.

Axiom A4 rules out the case in which the agent prefers any bundle that violates the

principle to any bundle that respects it. It thus applies to agents who care about not

violating the principle, at least in some instances. To see how Axiom A4 entails the

desirability of the principle, note that it rules out the case in which the sequence (xk)∞
k=1

is constant at a bundle x, as x itself would bound the sequence from above and below.

Formally, it means that for any sequence xn → x with (xn)∞n=1 ⊂ X1 and x ∈ X0, we must

have x ≻ xn for all large enough n. Indeed, if xn ≿ x for all n, we could set x̂ = xk = zk = x

and zkn = xn for all k,n, and the constant sequence (xk = x)∞
k=1

with x̂ = x would violate

A4. More generally, A4 implies a natural discontinuity property:

Discontinuity: Let x, y ∈ X0, and let there be a sequence xn → x with

(xn)∞n=1 ⊂X1 such that xn ≿ y. Then x ≻ y.

This is because y ≿ x implies xn ≽ x, which, by the argument above, violates A4. Indeed,

the hedonic gap between x and y should be at least the cost of principle. By ruling out

bounded yet infinite such gaps, A4 ensures that the utility value of any bundle in X be

finite, and that the hedonic difference between any two alternatives in X can always be

measured in terms of finitely many “costs” of the principle.11

Finally, we find it convenient to rule out the case in which all points inX0 are equivalent.

A5 Non-Triviality: There are x, y ∈ X0 such that x ≻ y.

2.3 Representation Result

We are now ready to state our behavioral characterization of preferences that satisfy the

aforementioned axioms.

11In Appendix B.2 we show that axiom A4 is implied by an intuitive (Lipschitz) continuity condition
that requires the bundles x and y as above to be not too close.
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Theorem 1 For a given d ∈ {0,1}n, the relation ≿ on X satisfies A1-A5 if and only if

there exist a continuous function u ∶ X → R, which isn’t constant on X0, and a constant

γ > 0 such that ≿ is represented by

U (x) = u (x) − γ1{d⋅x>0} (4)

Our preference characterization can be viewed as a minimal departure from standard

utility theory, aimed at explicitly modeling the influence of intrinsic principles on decision-

making and examining how utility changes in response to value-relevant information. De-

spite its minimalist nature, the preference representation in (4) is sufficiently flexible to

encompass several value-related expressions of preferences. Notably, all the examples pre-

sented in the Introduction, despite their differences, fall within the scope of our model, as

shown next.

Example 1 directly embodies our functional specification, with the vector d ∈ {0,1}n
representing the principle of vegetarianism. Mary categorizes bundles into two groups:

X0 is the space of all bundles x that do not contain any amount of meat as indicated

by d ⋅ x = 0; while X1 contains the bundles that violate the principle. In the latter case,

Mary anticipates a psychological cost γ associated with consuming the bundle which is

subtracted from the hedonic utility.

There are situations in which a principle is satisfied on a subspace of alternatives

which is not necessarily on the boundary of the entire space. This is demonstrated in

Example 2 on egalitarianism, where John is expected to violate continuity near the diagonal

y1 = y2. Example 2 can fit into our setup by changing the variables, exploiting the symmetry

assumption. Specifically, we can set x1 = max (y1, y2) and x2 = max (y1, y2) −min (y1, y2)
and allow d = (0,1) to embody the equality principle.12

As for Example 3, let us focus on situations where parents are late, excluding the

non-interesting case where t = 0. We can divide the set of pairs (t,m) into two subsets:

X0 = {(t,m) ∶ t > 0,m = 0}, which corresponds to situations where the parent is late but

does not pay a fine for that, and X1 = {(t,m) ∶ t > 0,m > 0}, where a positive fine is

imposed. In this simplified setup, d = 1 captures the principle of accepting to be late in

exchange for a fine. As shown in Example 3, the agent is willing to pay a small fine if it

12In this example, the space of unequal divisions X1 is not convex. Yet, it is the union of two convex
sets. This means that a similar representation result would hold if we define the utility on each subspace
of X1 and impose an additional symmetry axiom.
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alleviates the guilt she would feel otherwise. Our model then captures the discontinuity

at m = 0 observed in Gneezy and Rustichini (2000a, 2000b). There are two important

distinctions between this example and the previous ones. First, in the former we allow

guilt g(t) to be weakly increasing in the amount of delay t, while in the latter, as in our

representation, γ is constant (independent of t). This, however, turns out not to be a

substantial point, because our result allows for a seemingly more general representation,

where γ depends on t. We elaborate on this in subsection 2.3.1 below. Second, as opposed

to the previous examples where satisfying the principle brings pleasure, Example 3 presents

a symmetric situation: respecting the principle is actually costly due to the guilt incurred

by the agent. Formally, in our axiomatic model, this corresponds to having γ < 0 and it

can be accommodated by modifying axiom A4 accordingly.

Uniqueness To what extent is the representation unique? The answer depends on the

range of u and on γ. For example, if γ > supx∈X1 (u (x)) − infx∈X0 (u (x)), we have U (x) >
U (y) for all x ∈ X0, y ∈ X1 and the consumer would never give up the principle. In this case

the utility function is only ordinal: any monotone transformation of u and γ that satisfies

the above inequality represents preferences, and the utility function is far from unique. If,

by contrast, γ is very small relative to supx∈X1 (u (x)) − infx∈X0 (u (x)) > 0, the monotone

transformations that respect the representation (4) are much more limited. As will be clear

from the proof, u is ordinal until a point of equivalence between two bundles x ∈X0, y ∈ X1,

and then the utility is uniquely determined throughout the preference-overlap between X0

and X1. Clearly, shifting u by a constant and multiplying both u and γ by a positive

constant is always possible. Thus, on the preference-overlap between X0 and X1 we have

a cardinal representation, and outside this preference interval – only an ordinal one.13

Observability Axiomatic derivations are supposed to relate theoretical concepts to ob-

servations. If the latter term only refers to databases of choice instances, one can only have

finitely many observations in one’s database, and all continuity axioms become vacuous.

What is the point, then, of axiomatizing discontinuous preferences? Can one ever tell

the difference between our restricted continuity assumptions and the classical, unrestricted

ones?

The answer is in the affirmative if one adopts a slightly more general definition of “an

13This is reminiscent of the degree of uniqueness of representations of a semi-order by a function u and
a just-noticeable-difference δ > 0. See, for instance, Beja and Gilboa (1992).
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observation”. There are at least two types of situations in which we may consider infinitely

many binary choices. The first involves mind experiments: a consumer may imagine in-

finitely many choices – such as infinitely many bundles with varying amounts of meat.

The second pertains to stated preferences. Individuals, households, and organizations of-

ten state their preferences in a natural or even formal language, and such statements can

describe a preference relation that is defined between any pair of bundles taken out of an

infinite set. Our analysis can be helpful in testing how reasonable are such descriptions of

preferences.

For example, Rubinstein (1988) introduced the notion of definable preferences, and

called for modeling preferences that can be described within a formal language. Specifi-

cally, the lexicographic order, which might appear as a mathematical anomaly when using

calculus, is a rather natural example when preferences are stated in natural language. At

the same time, the fact that there is no real-valued representation of lexicographic prefer-

ences might indicate that these preferences, though easily stated, may not be acted upon.

By contrast, the statement of a vegetarian’s preferences, which can be numerically repre-

sented as above, may be more convincing. Thus, our axiomatic study can be helpful in

telling apart stated preferences that are more reasonable than others.

2.3.1 An equivalent formulation

As will be clear from the proof, one can state the main result somewhat differently: define

a function g ∶ R→ R+ to be Archimedean if there does not exist an infinite sequence (ui)i≥1
such that ui+1 − g(ui+1) ≥ ui that is bounded from above.14 Then our main result can be

stated as follows:

Proposition 1 Let there be given d ∈ {0,1}n. The following are equivalent:

(i) the relation ≿ on X satisfies A1-A5;

(ii) there exist a continuous function u ∶ X → R, which isn’t constant on X0, and a

continuous Archimedean function g ∶ R → R+ such that ≿ is represented by u on X0 and

X1 separately, and, as a whole on X, by

U (x) = u (x) − g (u (x))1{d⋅x>0};

(iii) there exist a continuous function u ∶ X → R, which isn’t constant on X0, and a

14Clearly, if g is Archimedean, it is strictly positive.
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constant γ > 0 such that ≿ is represented by

U (x) = u (x) − γ1{d⋅x>0}.

Clearly, the constant function g (u (x)) = γ is Archimedean for all γ > 0. Thus, the

representation in (iii) is a special case of that in (ii). Our proof shows, however, that they

are equivalent. In the main theorem we state only (iii), as it seems more parsimonious. Yet,

for some applications, one may find the added flexibility of (ii) useful. This can happen if

we expect the function u to provide more information than the mere ranking of bundles, or

if we wish to exploit some special functional forms. For example, if utility differences are

related to probabilities of choice (as in the stochastic choice literature), one cannot rescale u

to obtain a constant g without losing information about choice probabilities. Alternatively,

considering an application such as Example 3, we may wish to use an additively separable

u, a structure than might be lost by a transformation that renders g constant.

3 Related Literature

Standard economic theory tends to ignore value considerations and conceptualize a con-

sumer’s utility as a function of her own bundle (e.g., Varian, 1978; Kreps, 1990; Mas-Colell-

Whinston-Green, 1995). Yet, in a variety of domains ranging from applied economics to

marketing, it has long been observed that consumers care about ethical values. Auger,

Burke, Devinney, and Louviere (2003) and Prasad, Kimeldorf, Meyer, and Robinson (2004)

find that consumers are conscientious and express willingness to pay more for products that

have desirable social features, such as environmental protectionism, avoiding child labor,

as well as sweatshops. Barnett, Cloke, Clarke, and Malpass (2005) discuss the notion of

“consuming ethics”.

Taking a broader perspective, the notion that consumption has socio-psychological ef-

fects has long been recognized (Veblen, 1899; Duesenberry, 1949). Frank (1985a, 1985b)

highlights the role of social status, and, more recently, Heffetz (2011) studies the effects

of conspicuous consumption empirically. Interdependent preferences are also at the core

of Fehr and Schmidt’s (1999) inequity aversion, Karni and Safra’s (2002) sense of justice,

as well as Ben-Porath and Gilboa’s (1994) axiomatization of the Gini Index, and Mac-

cheroni, Marinacci, and Rustichini’s (2012, 2014) works on envy and pride. Conspicuous

consumption can be viewed as dealing with meaning, reflecting on one’s social standing
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and identity. Inequity aversion can similarly be conceived of as an attitude towards the

principle of equality.

Medin, Schwartz, Blok, and Birnbaum (1999) argue against formal models because of

the lack of attention to meaning and signification. According to their approach, decision

theory lacks the semantics of decisions. Meaning is also related to narratives one can

construct. Eliaz and Spiegler (2020) deal with narratives of causality, and Glazer and

Rubinstein (2021) – with stories that are sequences of events.

Recent developments in behavioral economics suggest formal modeling of some related

phenomena, such as the axiomatic models of Dillenberger and Sadowski (2012) on shame

over selfish behavior and Evren and Minardi (2015) on warm-glow. These works are similar

to ours in introducing ethical considerations into the utility function.

In comparison with the above diversified literature, our main contribution is to incorpo-

rate principles into microeconomic theory, in terms of a formal, axiomatically-based model

of consumer choice. In practice, our foundation brings to the fore a natural experimental

test to elicit whether a person cares intrinsically about a certain principle—discontinuity

at zero quantities, as in the case of vegetarians who prefer not to consume any amount of

animal meat. The discontinuity test sheds light on two novel aspects.

First, as explained previously (see paragraph on Observability), individuals and organi-

zations may often state facts about their preferences. However, not all such statements are

equally credible. Some descriptions of preferences may sound more convincing than others

and some policies are more likely to be implemented than others. In particular, natural

language may easily describe discontinuous preferences. For instance, lexicographic pref-

erences can be easily described in natural language but may not be supported by actual

behavior. From this viewpoint, our discontinuity test provides a mean to verify, at least at

the level of thought experiment, whether individuals really mean what they claim.

Second, as our examples suggest, our approach is applicable to different contexts and

could be viewed as a complementary method to experimentally investigate well-known phe-

nomena, such as inequity aversion and motivation crowding-out, based on the estimation

of a single parameter, γ.

4 Extensions

Clearly, the utility function axiomatized in this paper is special in two ways. First, it deals

with a single source of principles. That is, it can describe the behavior of a vegetarian
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consumer, but should the latter also care about child labor or Fair Trade, we will have

to consider more general functional forms, allowing for discontinuities at several subspaces

and carefully bridging them in the style of Axioms A2 and A3.15 Second, the meaning

attached to consumption is dichotomous. For example, if our consumer prefers not to eat

animals at all, but, should she have to, prefers to eat seafood than mammals, we will again

find that (1) is too special to describe her preferences. For both reasons one might be

interested in a functional form with several additive terms such as γ above. Importantly,

the resulting model would still involve discontinuities in quantities.

A natural extension of the model would represent preferences by a function

U (x) = u (x) + v (d,x) ,

where v (d,x) is the utility derived from principles. If all principles are instrumental, one

could expect v to be a continuous function (in the quantities x and also in d if it is modeled

as a vector of continuous coefficients). By contrast, we suggest that intrinsic principles tend

to generate discontinuities at zero quantities.

We mention in passing that the distinction between intrinsic and instrumental principles

may be important for consumer choice: instrumental principles are more negotiable than

the intrinsic ones. For example, a consumer who cares about the emission of CO2 because of

its damage to the environment may compensate for her consumption of flights by donating

money for planting of trees. However, a vegetarian consumer would be less likely to feel that

consuming meat is fine as long as one donates some money to animal rights organization.

An important direction for future research is the nature of optimization in our model,

especially if one makes the plausible assumption that the consumer cares about multiple

values/principles, and that they may interact in non-trivial ways. In particular, disconti-

nuity at zero can render the optimization problem NP-Hard, with the combinatorial aspect

resulting from the choice of variables that are consumed at strictly positive quantities. For

example, we can think of a utility function that allows the consumer to violate no more

than k principles, and embed a SET COVER problem in the optimization of U .16

15For decision making under risk, Gilboa, Minardi, and Wang (2024) present a model where multiple
principles can be “risked” simultaneously. The utilities therein are fully cardinal, as in the expected utility
model.

16Specifically, consider the following problem. Let there be n goods and m needs. Each good violates one
(distinct) principle, and v(d,x) is zero as long as no more than k of the xi’s are strictly positive, but it is
−1 otherwise. A quantity xi of good i ≤ n satisfies a need j ≤m to degree δijxi according to an incidence
matrix δij ∈ {0,1}. The function u (x) is a truncated Cobb-Douglas function defined on the degrees of need
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Appendix

A Proof’s Sketch

We explain the logic of the proof of Theorem 1 in three steps.

Step 1: Axioms A1-A3 help us find functions that we can think of as the hedonic utility

u: each is continuous throughout X and correctly represents preferences on X0 and X1,

separately. We note that A1 and A2 trivially imply that one can find continuous represen-

tations of ≿ on X0 and on X1, because on each of these A2 implies the standard continuity

axiom. This, however, does not mean that there exists a function that is continuous on all

of X and that represents ≿ both on X0 and on X1 (separately). The Online Appendix is

devoted to an auxiliary result (Theorem 2) stating that A3 is the missing link: it states

that any bounded and continuous utility function that represents ≿ on X1 has a unique

continuous extension to X0, in such a way that the extension represents ≿ also on X0.

We do not expect this extension to represent preferences across the two spaces because we

know that discontinuities are to be observed between them.

Step 2: We establish the more general version of representation (4) where the penalty

γ can vary with x. Let X̃0 = {x ∈ X0 ∶ ∃x′ ∈ X1, x ∼ x′} denote the part of X0 that

“overlaps” with X1 in preference. We can define a “boost function” γu ∶ X̃
0
→ R by setting

γu(x) = u(x′) − u(x) for all x ∈ X̃0 and x′ ∈ X1 with x ∼ x′. Axiom A4 guarantees γu to

be strictly positive on X̃0, and to satisfy inf
x∈X̃0γu(x) > 0 when X̃0 ≠ X0. And, when

X̃0 = X0 and inf
x∈X̃0γu(x) = 0, it must be that for every x′ ∈ X1 there must exist an

x ∈ X0 with x ≽ x′. We show that this γu is continuous and can be extended continuously

to the whole X0 when X̃0 ≠X0. With the extended γu, we then prove that the function

ũ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
u + γu, x ∈ X0

u, x ∈ X1

satisfaction

u (x) =max
⎡
⎢
⎢
⎢⎣∏j≤m(∑i≤n δijxi) ,0.5⎤⎥⎥⎥⎦

so that it obtains a positive value only if all needs are satisfied, each to a positive degree (and no more
than k principles are violated). We may assume that all prices are zero or that income is very large. The
function U (x) = u (x) + v (d,x) can obtain a positive value if and only if the incidence matrix δij ∈ {0,1}
contains no more than k rows i that cover all m columns.

To make the above well-defined, one has to agree on the language in which the utility function is described.
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represents ≿ on X0 and X1 together.

Step 3: We exploit the ordinality of standard utility representations and choose to

“scale” the utility u in such a way that the boost function γu is a constant γ > 0. Fixing

an x ∈ X0, we use γu(x) > 0 as a fixed measure of the utility of the principle. We then use

γu(x) to define “steps” on X0 that intuitively correspond to “better than... by exactly the

utility of the principle”, and we transforms u correspondingly so that it increases by the

same amount for each such step. We finally extend u to all of X. Axiom A4 guarantees

that this transformation of u can eventually cover the whole X.

B Proofs of Representation Results

It will be convenient to introduce the following definition of a binary relation P on X0:

Definition 2 For x, y ∈ X0, we say that xPy if there exists z ∈ X0 and a sequence zn →

z with (zn) ⊂X1 such that x ≿ z and zn ≿ y.

Observe that, if we had no discontinuity between X0 and X1, the relation P could be

expected to be equal to ≿: if xPy, the conditions zn → z and zn ≿ y would simply imply

that z ≿ y, and x ≿ y would follow by transitivity. Conversely, if x ≿ y, one could expect

an open neighborhood of x to contain points zn such that zn ≿ y even though zn ∈ X
1

(for example, monotonicity would insure that this is the case). However, in the presence

of discontinuity between X1 and X0, this is no longer the case. As explained above in

the context of A4, we should expect z to be strictly better than y; indeed, intuitively, “z

should be better than y at least by the cost of the principle”. And the same should hold

for any x ∈ X0 such that x ≿ z.

Using this definition, the Archimedean axiom can be written as follows.

A4 Archimedeanity (in P terms): Let (xn) ⊂ X0 be such that xn+1Pxn (xnPxn+1) for

all n ≥ 1. Then there does not exist x̂ ∈X such that x̂ ≿ xn (xn ≿ x̂) for all n ≥ 1.

This new formulation of A4 is simply a re-statement of the axiom in terms of the

relation P . We therefore do not re-name the axiom.

B.1 Proof of Theorem 1

The proof of necessity of the axioms is straightforward and therefore omitted. To prove

sufficiency, recall that ≿ is continuous on X1, and thus there exists a continuous bounded
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function v that represents ≿ on X1. By Theorem 2 (Online Appendix) we extend v con-

tinuously to all of X so that it represents ≿ on X0 as well. We will construct a continuous

function U on X0 that represents ≿ and that also represents P by γ differences. We start

out with any continuous function that represents ≿ on those x ∈ X0 for which there are

no y ∈ X0 such that xPy, use the function v (⋅) + γ on that set, and extend it to the rest

of X0 while respecting the representation of P by γ differences. Any element of X1 that

has a ≿-equivalent in X0 will have to have the same U value, and we will show that the

resulting function is continuous on X1 as well. Moreover, we will show that the function

so constructed has a constant “jump” of γ between any sequence in X1 that converges to

a limit in X0. We then extend it to elements of X1 which are strictly better or strictly

worse than all elements of X0.

Proof.

Lemma 1 For x, y ∈X0, if xPy then x ≻ y.

Proof: Assume not. Then there is a sequence zn → z, (zn) ⊂ X1, x ≿ z, and zn ≿ y

but y ≿ x. By transitivity of ≿, we also get zn ≿ x and by definition of P (with the same

sequence zn → z), we have xPx. Define xn = x ∈ X
0 such that xn+1Pxn for all n and the

sequence is bounded (by x̂ ≡ x), in violation of A4.

Lemma 2 For x, y,w ∈ X0, if xPy then (i) y ≿ w implies xPw, and (ii) w ≿ x implies

wPy.

Proof: Suppose that x, y, z ∈ X0 and (zn) ⊂ X1 are given, such that zn → z, x ≿ z and

zn ≿ y. In case (i), zn ≿ y ≿ w and by transitivity zn ≿ w, thus xPw by definition of P . As

for (ii), w ≿ x and x ≿ z imply w ≿ z and the definition of P yields wPy.

Lemma 3 For x, y ∈ X0, if xPy, then there exists z ∈ X0 and a sequence (zn) with zn ∈ X1

such that zn → z, x ≿ z and zn ∼ y.

Proof: Assume that x, y ∈ X0 satisfy xPy, and that z ∈ X0 and (zn) with zn ∈ X
1

satisfy zn → z, x ≿ z and zn ≿ y. We argue that, for each n, there exists αn ∈ (0,1] such
that wn ≡ αnzn+(1 − αn) y ∈ X1 satisfies wn ∼ y. Indeed, if zn ∼ y set αn = 1. Assume, then,

zn ≻ y. If there exists β ∈ (0,1) such that y ≻ βzn + (1 − β) y then zn ≻ y ≻ βzn + (1 − β) y,
with zn, βzn + (1 − β) y ∈ X1, and Lemma 7 yields the existence of a point on the interval

[βzn + (1 − β) y, zn] that is indifferent to y; that point is in [y, zn] and we are done. If such
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a β does not exist, βzn + (1 − β) y ≻ y for all β > 0. Taking a subsequence βk ↘ 0, with

βkzn + (1 − βk) y → y, we obtain yPy, in contradiction to Lemma 1.

Hence there are αn ∈ (0,1] such that wn ≡ αnzn + (1 −αn) y ∼ y; observe that wn ∈ X
1

because αn > 0. Choose a convergent subsequence of αn, αnk
→ α∗. Then wnk

→ w∗ ≡

α∗z + (1 −α∗) y ∈ X0. To show that x ≿ w∗, observe that znk
≿ wnk

(because znk
≿ y and

wnk
∼ y), znk

→ z,wnk
→ w∗, while (znk

)
k
, (wnk

)
k
⊂X1 and z,w∗ ∈ X0. Hence (znk

)
k
→ z

and (wnk
)
k
→ w∗ are comparable and A2 yields z ≿ w∗ and x ≿ w∗ follows by transitivity.

For the rest of the appendix, we use the notation X0

P to refer to the set defined as

X0

P = {y ∈X0 ∣∃x ∈ X0, xPy} .

The strategy of the proof is to choose the continuous representation of ≿ on X0 derived

from Theorem 2, take a monotone and continuous transformation thereof to obtain another

representation, u, that satisfies

xPy ⇔ u (x) − u (y) ≥ γ > 0

and then extend the function u to X1. To this end, it will be useful to know some facts

about continuous representations of ≿ on X0.

Lemma 4 Let there be given a continuous function u ∶ X0
→ R that represents ≿ (on

X0). Let y ∈ X0

P . Then there exists γ (y) > 0 such that, for every x ∈ X0, xPy iff

u (x) − u (y) ≥ γ (y). Furthermore, γ (y) can be extended to all of X0 so that w ≿ y iff

u (w) + γ (w) ≥ u (y) + γ (y) (for all y,w ∈ X0).

Proof: Define Py+ = {x ∈ X0 ∣xPy}.
Case (a): Let us first consider y ∈ X0

P so that Py+ ≠ ∅.

Consider u (Py+) = {u (x) ∈ u(X0) ∣xPy}. By Lemma 1, u (y) < a for all a ∈ u (Py+).
By Lemma 2, u (Py+) is an interval. We wish to show that it contains its infimum. Let

a = inf u (Py+). For k ≥ 1, let xk ∈ X0 be such that a ≤ u (xk) < a + 1

k
. Because xkPy,

by Lemma 3, there exist (i) zk ∈ X0 and (ii) (zkn)n≥1 with zkn ∈ X
1 such that zkn → zk,

xk ≿ zk and zkn ∼ y. Hence, ∀k, l,m,n, zkn ∼ z
l
m(∼ y). Because (zkn) , (zlm) ⊂ X1 converge to

zk, zl ∈ X0 respectively, A2 implies zk ∼ zl. This means that u (zk) = u (zl) ∀k, l and thus

u (zk) = a. Hence, a = minu (Py+) and a > u (y). It remains to define γ (y) = a − u (y) > 0.
For every y such that Py+ ≠ ∅, γ (y) is bounded from above (by u (x) − u (y) for any
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x ∈ Py+). Observe that γ (y) is uniquely defined ∀y ∈ X0

P . We now show that u + γ also

represents ≿ for alternatives y,w in this range.

In the construction above, u (y) + γ (y) = minu (Py+). If w ≿ y, Lemma 2 implies that

Pw+ ⊂ Py+ and thus minu (Pw+) ≥minu (Py+), so that u (w)+ γ (w) ≥ u (y)+ γ (y) follows.
To see that the inequality is strict if w ≻ y, let x ∈X0 be a ≿-minimal element in Pw+, that

is, u (x) = u (w) + γ (w). We claim that there exists x′ with u (x′) < u (x) such that x′Py

still holds (while x′Pw doesn’t). Because xPw, by Lemma 3 there exists z ∈ X0 and a

sequence (zn)n≥1 with zn ∈ X
1 such that zn → z, x ∼ z and zn ∼ w (and x ∼ z follows from

the minimality of x). Hence, zn ≻ y. As in the proof of Lemma 3, for each zn we can find

αn ∈ (0,1] such that tn ≡ αnzn + (1 −αn)y ∈X1 satisfies tn ∼ y (or else yPy would follow).

Taking a convergent subsequence of αn, say αnk
→ α∗, we have tnk

→ t∗ ≡ α∗z +

(1 −α∗) y ∈ X0. We thus have two sequences (znk
) , (tnk

) ⊂ X1, with znk
∼ w ≻ y ∼ tnk

and znk
→ z, tnk

→ t∗ with z, t∗ ∈ X0. Observe that (znk
) → z, (tnk

) → t∗ are comparable.

Hence A3 implies that z ≻ t∗. Thus ∃x′ ∈ X0 with u (x′) ∈ (u (t∗) , u (z)). As z (and x)

was selected to have the lowest possible u in u (Pw+), x′Pw doesn’t hold, while x′Py does.

Case (b): For y ∈ X0/X0

P we set γ (y) to be a constant, defined as follows. Let

ū = supz∈X0

P
u (z). This sup may or may not be a max.17 Define

γ (y) = lim
n→∞

sup{γ (z) ∣ ū − 1

n
< u (z) ≤ ū} .

It is finite because γ (y) is bounded from above by (u (x) − ū + 1) ∀x ∈ Pz+. Because γ (y)
is constant for all y ∈X0/X0

P , and u represents ≿ for alternatives y,w in this range, so does

u + γ. Next, observe that supz∈X0

P
[u (z) + γ (z)] = supz∈X0 u (z) and, for y ∈ X0/X0

P and

w ∈ X0

P we have u (y)+γ (y) ≥ supz∈X0 u (z) ≥ u (w)+γ (w) and u (y)+γ (y) > u (w)+γ (w).
That is, the value supz∈X0 u (z) might be obtained by u (⋅)+ γ (⋅) on X0 or on X0/X0

P but

not on both, so that u + γ represents ≿ on the entire range.

Lemma 5 Let there be given a continuous function u ∶ X0
→ R that represents ≿ (on X0).

There exists a continuous function φ ∶ u(X0)→ R such that, for every x ∈X0, y ∈ X0

P , xPy

iff u (x) − u (y) ≥ φ (u (y)) and u (⋅) + φ (u (⋅)) also represents ≿ on X0.

17For example, for n = 2, X = [0,10]2 and d = (1,0) consider u1 (x1, x2) = x2 + x1 and u2 (x1, x2) =
x2 + (x1 − 1)2. In both cases define the relation by the function ui and γ = 1. In the case of u1 the relation
P is a closed subset of X0× X0 an ū = 9 is the max of u (z) over X0

P , whereas for u2 P isn’t closed, and
the point (9,0) is not in X0

P , leaving ū = 9 the sup of the utility in X0

P .
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Proof: Use Lemma 4 to define γ ∶ X0
→ R such that u (⋅) + γ (⋅) represents ≿ on X0

and xPy iff u (x) − u (y) ≥ γ (y) whenever y ∈ X0

P as above. Observe that, ∀y,w ∈ X0, we

have w ≿ y iff u (w)+γ (w) ≥ u (y)+γ (y). Hence w ∼ y implies u (w)+γ (w) = u (y)+γ (y)
and, since u (w) = u (y) also holds in this case, γ (w) = γ (y). It follows ∃φ ∶ R → R such

that γ (y) = φ (u (y)), uniquely defined for all values ū = u (y) such that y ∈ X0

P . To show

that φ is continuous on that range, let there be given ū ∈ range (u) and (uk)
k≥1

so that

uk ∈ range (u) and uk → ū (as k → ∞). If φ (uk) → φ (ū) fails to hold, there exists ε > 0

such that (i) there are infinitely many k’s for which φ (uk) < φ (ū) − ε or (ii) there are

infinitely many k’s for which φ (uk) > φ (ū) + ε.
In case (i), let y ∈ u−1 (ū) and yk ∈ u−1 (uk) for k from some k0 on (obviously, with

y ∈ X0

P and yk ∈ X0

P for all k). As u is continuous, we can also choose such a y and a

corresponding sequence so that yk → y. Let t, t′ ∈ X0 be such that u (y)+φ (u (y)) = u (t) >
u (t′) > u (yk) + φ (u (yk)) for all k ≥ k0, so that t ≻ t′, tPyk,t′Pyk for all k, tPy but not

t′Py. As tPy we can select a sequence (zn) ⊂ X1 with zn → z ∈ X0, t ≿ z and zn ∼ y.

By the choice of t (as a u-minimal element such that tPy), u (t) = u (z). As t′Pyk, there

is, ∀k, a sequence (wk
n) ⊂ X1 such that wk

n → wk ∈ X0, t′ ≿ wk and wk
n ∼ y

k. As above,

select a convergent subsequence of the diagonal to get a sequence (wn
n) ⊂ X1 such that

wn
n → w ∈ X0, t′ ≿ w ∈ X0 and wn

n ∼ y
n. By transitivity, z ∼ t ≻ t′ ≿ w. Observe that zn → z

and wn
n → w are comparable, and we also have z ≻ w. Use Lemma 10 (Online Appendix)

for yn = y
n
→ y and xn = x = y. Because xn, yn, x, y ∈ X

0, yn → y and xn → y are also

comparable. Lemma 10 implies y ≻ y, a contradiction.

In case (ii) select t, t′ ∈ X0 be such that u (y) + φ (u (y)) = u (t) < u (t′) < u (yk) +
φ (u (yk)) ∀k ≥ k0, so that t′ ≻ t, tPy and t′Py hold, but tPyk,t′Pyk do not hold for any

k. For each k, ∃tk such that u (tk) = u (yk) + φ (u (yk)) (a u-minimal element satisfying

tkPyk). Let (zkn) ⊂ X1 be such that zkn → zk ∈ X0, tk ≿ zk and zkn ∼ y
k. Let (zn) ⊂ X1

be such that zn → z ∈ X0, t ≿ z and zn ∼ y. By the choice of t,(tk) as minimal elements,

t ∼ z and tk ∼ zk. Select a convergent subsequence of zkk → z∗ ∈ X0. Because zk ≿ t′ (and

zk ∈ X0) we have z∗ ≿ t′ ≻ t. Again, contradiction follows from Lemma 10.

To complete the proof, use Theorem 2 (Online Appendix) to have a continuous and

bounded function v ∶ X → R that represents ≿ on X0 and on X1. By A5, it isn’t constant on

X0. Assume, w.l.o.g., that infx∈X0 v (x) = 0 and supx∈X0 v (x) = 1. Let b = infx∈X v (x) and
a = supx∈X v (x) so that b ≤ 0 ≤ 1 ≤ a. Next, define a continuous u ∶ X → R and γ > 0 such

that U (x) = u (x)−γ1{x∈X1} represents ≿. We first define U = u on X0, and ∆ > 0 such that

u represents ≿ on X0, and (u,∆) jointly represent P on X0 by [xPy⇔ u (x)−u (y) ≥∆],
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and then define u on X1 and γ.

Step 1: Definition of U = u on X0

If P = ∅ define u = v and ∆ = 2. Clearly, the representation of P holds. Otherwise, if

P ≠ ∅, we construct a partition of X0 into countably many subsets X0

k for k ∈ Z such that,

if x ∈X0

k and y ∈ X0

l , then k > l + 1 implies xPy and k ≤ l implies ¬(xPy). First, we define

a function S ∶ X0 ×X0
→ Z to be the maximal k such that there are z0 = x, zk = y, ziPzi+1

for ∀i ≤ k − 1. For x ≿ y ≿ z, we have S (z, y) + S (y,x) ≤ S (z,x) ≤ S (z, y) + S (y,x) + 1.

For x, y ∈ X0 with y ≻ x, set S (y,x) = −S (x, y) − 1 so that S (y,x) + S (x, y) = −1 for all

x ≁ y. We finally define u on X0. Distinguish between two cases:

Case 1a: ∀x ∈ X0 ∃y ∈ X0 such that xPy. In this case, should the representation

of P by ∆ hold, u should be unbounded from below. Select an x0 ∈ X
0 with Px0+ ≠ ∅.

For k ∈ Z, let X0

k = {y ∈ X0 ∣ S (x0, y) = k}. For y ∈ X0

0
(that is, y ≿ x0 but not yPx0),

set u (y) = v (y) − v (x0) (in particular, u (x0) = 0). Let ∆ = supX0

0

u (y). By Lemma 4,

∆ > 0. Once u is defined for all y ∈ X0

k for k ≥ 0, extend it to X0

k+1 as follows: ∀x ∈ X0

k+1

∃y ∈ X0

k such that v (x) = v (y) + φ (v (y)) where φ is the function constructed in Lemma

5 for v (and by Lemma 5, this is the highest y that satisfies xPy). Set u (x) = u (y) +∆.

Similarly, if u is defined for all y ∈ X0

k for k ≤ 0, extend it to X0

k−1 by u (x) = u (y) −∆ for

x ∈ X0

k−1 and y ∈ X0

k such that v (y) = v (x) + φ (v (x)). It is straightforward to verify that

u so constructed is a continuous strictly monotone transformation of v and thus represents

≿ on X0. Define also U = u on X0.

Case 1b: ∃x ∈X0 such that, ∀y ∈ X0 we have ¬(xPy). If there exists a v- (equivalently,
a ≿-) minimal element in X0, denote it by x0 and proceed as in Case 1a. If not, let

α = sup{v (x) ∣x ∈X0,∄y ∈X0, xPy} so that v (x) > α implies (∃y ∈ X0, xPy) and

v (x) < α implies (∀y ∈ X0, ¬(xPy)). If α = 0, in the absence of a minimal element, then

we are in Case 1a (where each x ∈ X0 P -dominates at least one other element). Hence

α > 0. Define u (x) = v (x) for all x with v (x) ≤ α and ∆ = α. For x with v (x) > α
we repeat the construction above, with X0

k including all elements x ∈ X0 for which the

maximal decreasing P -chain is of length k.

Step 2: Definition of u on X1 and of γ

To extend the function to all of X, partition X1 into three sets, X1∼ – the elements

that have a ∼-equivalent in X0, and X1≺ (X1≻) – those that are worse (better) than all

elements in X0. If X1∼ ≠ ∅, each of X1≺,X1≻ may be empty or not. However, if X1∼ = ∅

we have to have X1≺ ≠ ∅: otherwise (X1≻ =X1) all x ∈X1 and y ∈ X0 will satisfy x ≻ y and
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yPy would follow. Further, in this case, since X1∼ = ∅ and X1≺ ≠ ∅ we also have X1≻ = ∅,

by Lemma 7 (Online Appendix). We will therefore split the definition according to the

emptiness of X1∼.

Case 2a: X1∼ = ∅. In this case we have X1∼ = X1≻ = ∅ as well as P = ∅ (as no

element in X1 is ranked as high as any in X0). Define u (x) = v (x) ∀x ∈ X1 = X1≺, and

set γ = 2 (a − b) ≥ ∆. On X1, U (x) = v (x) − γ. Thus u = v is a continuous function on all

of X, U represents ≿ on X0 as well as on X1, and it also satisfies U (x) < U (y) for every
x ∈ X1 and every y ∈ X0.

Case 2b: X1∼ ≠ ∅. We first define U that would represent ≿ on the entire space, and

then find the γ > 0 such that u (x) = U (x)+γ1{x∈X1} is continuous. For x ∈X
1∼, let y ∈ X0

be such that x ∼ y and define U (x) = U (y). This function represents ≿ on X0 ∪X1∼. We

wish to show that it is continuous on X1∼.

Claim: U ∶X0 ∪X1∼
→ R is continuous (also) on X1∼.

Proof: Let there be (xn) → x in X1∼ and select corresponding (yn) , y in X0 (so that

x ∼ y and xn ∼ yn). Assume first that x1 ≻ x and that x1 ≿ xn ≿ x ∀n. We claim that

u (xn) → u(x). A symmetric argument would apply to the case x1 ≺ x and (x1 ≾ xn ≾ x

∀n) and the combination of the two would complete the proof. We thus have x1 ∼ y1 ≿

xn ∼ yn ≿ x ∼ y ∀n. By Lemma 7 ∃αn ∈ [0,1] such that ŷn ≡ αny1 + (1 − αn) y ∼ yn. By

convexity of X0, ŷn ∈ X
0. Thus, U (xn) = U (yn) = U (ŷn) and U (x) = U (y). Select a

convergent subsequence (nk)k such that ŷnk
→ y∗ ∈ X0. As U is continuous on X0, we

have U (ŷnk
) → U (y∗). Because xnk

→ x are in X1∼ and ŷnk
→ y∗ are in X0, the two

sequences are comparable and A2 implies that x ∼ y∗ and thus also y ∼ y∗. It follows that

U (x) = U (y) = U (y∗) = limU (ŷnk
) = limU (xnk

). ◻
Let v∗ = infx∈X1∼ v (x) and v∗ = supx∈X1∼ v (x). Recall that v is bounded (by b, a) and

thus b ≤ v∗ ≤ v
∗ ≤ a. Denote u∗ = supx∈X1∼ U (x) and u∗ = infx∈X1∼ U (x) (which can be ∞,

−∞, respectively).

On X1∼, both v and U represent ≿, and are continuous. Thus there exists a continuous,

strictly increasing ψ ∶ (v∗, v∗) → (u∗, u∗) such that, ∀x ∈ X1∼, U (x) = ψ (v (x)) and

limv↘v∗ ψ (v) = u∗ limv↗v∗ ψ (v) = u∗. Further, if v∗ is obtained by v on X1∼, u∗ > −∞

and we can define ψ (v∗) = u∗, and, similarly, ψ (v∗) = u∗ in case v∗ =maxx∈X1∼ v (x) (and
u∗ <∞).

Next, extend ψ to the entire range of v on X1. Consider first v > v∗. If X1≻ = ∅,

then v on X1 is bounded above by v∗, and the extension of ψ to this range is immaterial.
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Otherwise, that is, X1≻ ≠ ∅, A4 implies U(x) < ∞ ∀x ∈ X0 and hence u∗ < ∞. Set

ψ (v) = (v − v∗)+u∗ ∀v > v∗, representing ≿ on X1≻. Similarly, consider v < v∗. If X
1≺ = ∅,

then v on X1 is bounded below by v∗, and the extension of ψ to this range is immaterial.

Otherwise, that is, X1≺ ≠ ∅, we know, by A4, that U(x) > −∞ for all x ∈ X0 and this means

that u∗ > −∞. Hence we can set ψ (v) = (v − v∗)+u∗ for all v < v∗. Thus, U (x) = ψ (v (x))
is well defined for all x ∈ X1; combined with the definition of U on X0, we know that (i) U

represents ≿ on the entire space X; (ii) U is continuous on each of X0 and X1. It remains

to define γ > 0 and show that, for that γ, u (x) = U (x) + γ1{x∈X1} is continuous on the

entire space. We set γ to be equal to ∆ as defined in Step 1.

Claim: u ∶X → R is continuous on X.

Proof: We only need to consider sequences (xn) ⊂ X1 that converge to x ∈ X0. Let there

be given such a sequence (xn) ⊂ X1 with xn → x ∈ X0. Distinguish between two cases:

Case 2b(i): ∃y ∈ X0, xPy. Assume w.l.o.g. that u (y) = u (x) − γ, i.e., that y is a

u-maximal element with xPy. There exists a sequence (x′n) ⊂ X1 with x′n → x ∈ X0 and

x′n ∼ y so that U (x′n) = U (y) = u (y) and, U on X1 being a continuous transformation of

v, where the latter is continuous on all of X, we also have U (xn) → limnU (x′n) = u (y) =
u (x) − γ = U (x) − γ. Hence u (xn) = U (xn) + γ → U (x) = u (x) as required.

Case 2b(ii): ∄ y ∈ X0 with xPy. By the definition of u = U on X0 in Step 1, we are in

Case 1b and u (x) = U (x) = v (x). Consider the sequence (xn). Because it is convergent,

and v is continuous on X, ∃ limn v (xn) (= v (x)). On X1 U (⋅) = ψ (v (⋅)) is continuous,

thus ∃ limnU (xn). The limit v (x) = limn v (xn) cannot exceed v∗ (if it did, ∃y ∈ X0 such

that xn ≿ y for infinitely many n’s, and xPy would follow). However, in the domain v ≤ v∗

we have ψ (v) = (v − v∗) + u∗ = v − (v∗ − u∗). Further, in this case (corresponding to Case

1b in the definition of u on X0), u∗ = infx∈X0 v (x) = 0 while v∗ = infx∈X1∼ v (x) = ∆ = γ. It
follows that

lim
n
U (xn) = lim

n
ψ (v (xn)) = lim

n
v (xn) − γ = v (x) − γ

and thus u (xn) = U (xn) + γ → v (x) = u (x) and continuity is established.

B.2 A Lipschitz Continuity Property

This section shows that A4 can be strengthened to the following Lipschitz continuity prop-

erty.

A6 Lipschitz: There exists δ > 0 such that, for every x, y, z ∈ X0, and every sequence
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zn → z with (zn) ⊂X1 such that x ≿ z and zn ≿ y, we have ∥x − y∥ > δ.
Axiom A6 states that, for a bundle x ∈ X0 to be better than another bundle, y ∈X0, by

“at least the cost of the principle”, x should not be too close to y. We dub it “Lipschitz”

as it will be satisfied by any utility function that is Lipschitz continuous on the entire

space. Observe, however, that we only require the Lipschitz condition for one specific

δ > 0, guaranteeing that two bundles that are δ-close will not have a utility gap that is

higher than a certain threshold (the presumed γ). If we restrict attention to compact

bundle spaces, we can use A6 in lieu of A4:

Corollary 1 Let d ∈ {0,1}n be given and assume that X is compact. If the relation ≿ on

X satisfies A1-A3, A5, and A6, there exist a continuous function u ∶ X → R, which isn’t

constant on X0, and a constant γ > 0 such that ≿ is represented by U (x) = u (x)−γ1{d⋅x>0}
Proof: First, it useful to re-state axiom A6 in terms of the relation P as follows:

There exists δ > 0 such that, for every x, y ∈ X0, if xPy then ∥x − y∥ > δ.
We next show that, when X is compact, A6 implies A4. Since X is compact, we have

that X0 is compact as well. We wish to show that no infinite decreasing P chain can

be bounded from below, nor can an infinite increasing P chain be bounded from above.

However, A6 would make a stronger claim, namely, that there are no infinite P chains

(neither increasing nor decreasing). Indeed, Lemma 2 implies that P is transitive. Had

there been an infinite P chain, we would have to find two elements, say xi and xj such

that xiPxj (with i > j for a decreasing P chain and i < j for an increasing one) while they

are in a δ-neighborhood of each other, in contradiction to A6. ◻
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This online appendix is organized in two subsections. Subsection C.1 contains an

auxiliary result. Subsection C.2 presents some examples showing that all axioms presented

in the paper are independent of each other.

C.1 An Auxiliary Result

This appendix presents and proves the following auxiliary result used in the proof of The-

orem 1.

Theorem 2 Let ≿ on X satisfy A1-A3. Then, a bounded and continuous function u ∶

X1 → R that represents ≿ on X1 has a unique continuous extension to (all of) X. This

extension represents ≿ also on X0.

Note that the theorem does not state that the extended u represents ≿ on X in its

entirety. Indeed, the continuity axioms do not state that preferences change continuously

along a sequence that crosses from X1 to X0, and thus a utility function that is continuous

on the entire space cannot be expected to represent preferences across the two subspaces.

As mentioned earlier, Kopylov (2016, Theorem 6) provides a related extension result by

imposing a property dubbed “Cauchy continuity” on X1. This condition is weaker than

our A3 axiom. Indeed, in order to show that there is an extension of a continuous u from

X1 to X0, one can make do with Cauchy continuity and invoke Kopylov’s result. However,
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‡HEC, Paris and Reichman University. tzachigilboa@gmail.com – Corresponding Author

1



in our setup the relation ≿ is defined also on X0, and in order to verify that the extension

represents ≿ also on X0, an additional assumption is needed. We use A2, and later show

that it is independent of A3, and therefore isn’t implied by Cauchy continuity of ≿ on X1.

Proof of Theorem 2. Without loss of generality we assume that d isn’t identically

0 not identically 1, so that X0,X1 ≠ ∅. Note that, due to convexity of X1, X0 is included

in the closure of X1.

We start with a few lemmas. Throughout we assume that ≿ on X satisfies A1-A3.

(Note, however, that the first three lemmas do not make use of A3).

Lemma 6 Let there be a sequence xn → x. Assume that [(xn) ⊂ X0 and x ∈ X0] or

[(xn) ⊂X
1 and x ∈X1]. Then, for all y ∈ X, if xn ≿ y, then x ≿ y and if y ≿ xn, then y ≿ x.

Proof: Define yn = y for all n ≥ 1. Note that the sequences xn → x and yn → y are

comparable (satisfying Condition A), and apply A2. ◻

Lemma 7 Let there be x, y, z ∈ X with x ≻ y ≻ z. Assume that x, z ∈ X0 or that x, z ∈ X1.

Then there exists α ∈ [0,1] such that y ∼ αx + (1 − α) z.
Proof: The argument is familiar, and we mention it explicitly to point out that it does

not depend on monotonicity or openness conditions. Let there be x, y, z ∈X with x ≻ y ≻ z

and assume without loss of generality that x, z ∈ X0 (the argument is identical for X1).

Define

A− = {α ∈ [0,1] ∣ y ≻ αx + (1 −α) z }
A+ = {α ∈ [0,1] ∣αx + (1 − α) z ≻ y}

and we have A− ∩ A+ = ∅, with 1 ∈ A+ and 0 ∈ A−. Consider α∗ = infA+ and define

x∗ = α∗x + (1 − α∗) z. We wish to show that it is the desired α, so that α∗ ∉ A− ∪A+ and

y ∼ x∗ holds. Suppose that this is not the case. If α∗ ∈ A− (and y ≻ x∗), we can choose

a sequence α+n ∈ A
+ with α+n ↘ α∗. Then xn = α+nx + (1 −α+n) z ∈ A+ → x∗. Importantly,

X0 is convex. Hence xn ∈ X
0 for all n and x∗ ∈ X0 as well. Lemma 6 implies that x∗ ≿ y,

a contradiction. Similarly, if α∗ ∈ A+ (and x∗ ≻ y), then α∗ = minA+ and we must have

α∗ > 0 as 0 ∈ A−, in which case we can choose a sequence α−n ∈ A
− with α−n ↗ α∗. Then,

Lemma 6 implies that y ≿ x∗, again a contradiction. Hence y ∼ x∗.
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The argument holds also for X1 since it is a convex set as well. ◻

We also note the following.

Lemma 8 For all comparable sequences ξn → ξ and ηn → η, if ξ ≻ η, then there exists an

N > 0 such that

ξn ≻ ηm ∀n,m > N.

Proof: If the conclusion does not hold, for N1 = 1 we have n1,m1 such that ηm1
≽ ξn1

.

Set N2 = max (n1,m1) and find n2,m2 > N2 such that ηm2
≽ ξn2

. Continuing this way,

we generate two subsequences (nk,mk)k such that ηmk
≽ ξnk

for all k, with ξnk
→ ξ and

ηmk
→ η being comparable (as subsequences of comparable sequences with these limits).

A2 would then imply η ≽ ξ, a contradiction. ◻

Two implications of the A3 (in the presence of A1, A2) will be useful to state explicitly.

Lemma 9 For all comparable sequences xn → x and yn → x, and all z,w ∈ X, if (xn ≿ z

and w ≿ yn) then w ≿ z.

Proof: Let there be given comparable sequences xn → x and yn → x as well as z,w ∈ X

such that xn ≿ z and w ≿ yn. We need to show that w ≿ z. Assume, to the contrary, that

z ≻ w. Define y = x. With xn ≿ z ≻ w ≿ yn we can apply A3 and conclude that x ≻ y which

is impossible as y = x. Thus we rule out the possibility z ≻ w and conclude that w ≿ z as

required. ◻

The following lemma is not needed for Theorem 2 but it is used in the proof of Theorem

1. It is similar to A3 and can easily be shown to imply it. Thus the lemma shows that, in

the presence of A1 and A2, the two conditions are equivalent.

Lemma 10 For all pairs of comparable sequences, (xn → x and yn → y) and (zn → z and

wn → w), if (i) z ≻ w; and (ii) xn ≿ zn; wn ≿ yn for all n, then x ≻ y.

Proof: Assume, then, that (xn → x and yn → y) and (zn → z and wn → w), are given,

such that (i) z ≻ w; and (ii) xn ≿ zn ; wn ≿ yn for all n. We split the argument depending

on the reason that zn → z and wn → w are comparable. Assume, first, that they satisfy

Condition A, that is, that (zn) ⊂ Xi, z ∈ Xi and (wn) ⊂ Xj ,w ∈ Xj for i, j ∈ {0,1}. In

this case, because the limit of each sequence (zn) , (wn) belongs to the same space Xi as

the sequence itself, we also have, w.l.o.g., zn ≻ w and z ≻ wn for all n. (Otherwise, we
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can apply A2 to the relevant sequence and to a constant sequence and derive w ≿ z from

A2.) Next, consider a specific n > N . If there are infinitely many indices nk > n such that

znk
≿ zn, let n be the minimal index with this property, and, for that n, set z∗ = zn and

restrict attention to the subsequence (nk)k. Clearly, xnk
≿ znk

≿ zn = z
∗. If not, then for

every n > N there is ln > 0 such that, for all m > n + ln, we have zn ≻ zm. In that case we

can select a subsequence (znk
) such that znk

≻ znk+1
. As (znk

)→ z and belongs to the same

space (as z), we can compare it to the sequence that equals z throughout and conclude

that znk
≿ z for all k. We can then set z∗ = z and we have xnk

≿ znk
≿ z = z∗. Thus we

found an element z∗ and a subsequence (nk) such that xnk
≿ z∗ with z∗ being either z or

one of zn.

We now limit attention to the subsequence (nk) and repeat the argument for (wn). In
a symmetric fashion, we now have a sub-subsequence (nkl) and w∗ which is either w or

one of wnk
such that w∗ ≿ wnkl

≿ ynkl
. Importantly, whether z∗ = zn or z∗ = z, whether

w∗ = wnk
or w∗ = w, we have z∗ ≻ w∗ (where this follows either from z ≻ w, which was

given, or from the claims proven above for the other three possibilities). Thus A3 can be

used to derive the conclusion x ≻ y.

Next assume that zn → z and wn → w are comparable but that they do not satisfy

Condition A. This means that they satisfy Condition B, that is, that (zn) ⊂Xi, z ∈ Xj and

(wn) ⊂Xi,w ∈Xj for i, j ∈ {0,1}. But this also means that i ≠ j (or else Condition A would

also hold). Further, because X0 is closed, we have to have (zn) , (wn) ⊂X1 while z,w ∈ X0.

As X0 is convex, hence connected, we have z′ ∈ X0 such that z ≻ z′ ≻ w (otherwise, we

could use Lemma 6, applied to zn → z and wn = w to get w ≿ z). Repeating the argument

for the pair z′ ≻ w, we conclude that there is also w′ ∈ X0 such that

z ≻ z′ ≻ w′ ≻ w.

Next we select elements (z′n) , (w′n) ⊂ X1 such that z′n → z′ and w′n → w′. Notice

that this is possible as X0 is a non-trivial subspace of X. Thus we have four sequences,

zn → z, wn = w, z
′
n → z′, w′n → w′ and two of which are comparable. Applying Lemma 8

consecutively, we conclude that there exists an N > 1 such that, for all n,k, l,m > N we

have

zn ≻ z
′
k ≻ w

′
l ≻ wm.

Fix k, l > N and set z∗ = z′k, w
∗ = w′l . Thus, zn ≻ z

∗ ≻ w∗ ≻ wn for all n > N . As we also
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have xn ≽ zn and wn ≽ yn for all n, we conclude that xn ≻ z
∗ ≻ w∗ ≻ yn and apply A3 to

conclude that x ≻ y. ◻

We now turn to define the extension. Let there be given a bounded and continuous

function u ∶X1 → R that represents ≿ on X1. We first note that

Lemma 11 Assume that (xn) ⊂X1 is such that xn → y ∈ X0. Then ∃ limn→∞ u (xn).
Proof: Assume that xn → y ∈ X0. We claim that there exists a ∈ R such that u (xn)→ a.

If u (xn) → supx∈X1 u (x) or u (xn) → infx∈X1 u (x) then u (xn) is convergent and we are

done. Assume, then, that this is not the case. As u is bounded, we can find a number

a ∈ (infx∈X1 u (x) , supx∈X1 u (x)) and a subsequence (xnk
)
k
such that u (xnk

) →k→∞ a. If

we also have u (xn) →n→∞ a, we are done. Otherwise, there exists ε > 0 such that, for

infinitely many n’s, u (xn) > a + ε, or that, for infinitely many n’s, u (xn) < a − ε (or

both). This means that there is another subsequence (xnl
)l such that u (xnl

)→l→∞ b with

∣a − b∣ ≥ ε. Assume w.l.o.g. that b ≥ a + ε. As u is continuous on X1, and the latter is

convex (and connected), we have points z,w ∈ X1 such that b − ε
3
> u (z) > u (w) > a + ε

3
.

But this means that, for large enough k, l, we have xnl
≻ z ≻ w ≻ xnk

with xnk
→k→∞ y and

xnl
→l→∞ y. By A3 we should get y ≻ y, a contradiction. Thus u (xn) is convergent. ◻

Lemma 12 For every y ∈ X0 there exists a ∈ R such that, for every (xn) ⊂X1 with xn → y,

we have ∃ limn→∞ u (xn) = a.
Proof: Lemma 11 already established that every convergent sequence xn → y ∈ X0 gen-

erates a convergent sequence of utilities. Clearly, this means that the limit is independent

of the sequence. Explicitly, if (xn) , (x′n) ⊂ X1 are such that xn → y ∈ X0 and x
′

n → y, we

know that for some a, a′ ∈ R we have u (xn) → a and u (x′n) → a′. But if a ≠ a′, we can

generate a combined sequence whose utility has no limit. (Say, for z2n = xn, z2n+1 = x
′
n, we

get zn → y but u (zn) is not convergent.) ◻
We can finally define the extension of u. For every y ∈ X0 there exist sequences

(xn) ⊂X1 with xn → y. By Lemma 11 we have ∃ limn→∞ u (xn) and by Lemma 12 its value

is independent of the choice of the convergent sequence. Thus, setting

u (y) = lim
n→∞

u (xn)
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is well-defined. Observe that this is the unique extension of u to X0 that holds a promise

of continuity.

Lemma 13 u is continuous (also) on X0.

Proof: Let there be given y ∈ X0 and a convergent sequence xn → y. We need to show

that u (xn) → u (y). We will consider two special cases: (xn) ⊂ X1 and (xn) ⊂ X0. If we

show that for each of these the conclusion u (xn)→ u (y) holds, we are done, as any other

sequence can be split into two subsequences, one in X0 and the other in X1, and each of

these, if infinite, has to yield u values that converge to u (y).
When we consider (xn) ⊂ X1 we are back to the first part of the proof, where we

showed that u (xn) is convergent, and that its limit has to be u (y). Consider then a

sequence (xn) ⊂ X0 such that xn → y and assume that u (xn) → u (y) doesn’t hold. Then

there exists ε > 0 such that, for infinitely many n’s, u (xn) > u (y)+ ε, or that, for infinitely
many n’s, u (xn) < u (y) − ε (or both). For each n select a sequence (xkn)k ⊂ X1 such that

xkn →k→∞ xn. For every m, pick n such that ∥xn − y∥ < 1

2m
and k such that ∥xkn − xn∥ < 1

2m

so that (xnn) ⊂X1 and xnn →n→∞ y. However, ∣u (xnn) − u (y)∣ ≥ ε, a contradiction. We thus

conclude that u is continuous on X0. ◻

Next, we wish to show that the continuous extension we constructed represents ≿ also

on its extended domain, X0. We do this in two steps. First, we observe the following:

Lemma 14 For all x, y ∈ X0, if u (x) > u (y) then x ≻ y.

Proof: By definition of u, we can take sequences (xn) , (yn) ⊂X1 such that xn → x and

yn → y. Letting ε = u (x) − u (y) > 0 choose N large enough so that for all n ≥ N we have

∣u (xn) − u (x)∣ , ∣u (yn) − u (y)∣ < ε/3. As u is continuous on X1 we can also find z∗,w∗ ∈ X1

so that u (z∗) = u (x) − ε/3; u (w∗) = u (y) + ε/3. Thus u (xn) > u (z∗) > u (w∗) > u (yn) for
all n ≥ N . A3 implies that x ≻ y. ◻

The next and final step of the proof is to show the converse, namely:

Lemma 15 For all x, y ∈ X0, if u (x) = u (y) then x ∼ y.

Proof: We first prove an auxiliary claim:

Claim 1 Assume that, for z,w ∈ X0, u (z) = u (w) = a but z ≻ w. Let (zn) , (wn) ⊂ X1

converge to z and w respectively. Then ∃N such that, ∀n ≥ N we have (i) u (zn) ≥ a and

(ii) u (wn) ≤ a.
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Proof of Claim: Suppose first that u (zn) < a occurs infinitely often. Let (nk) be a

sequence such that u (znk
) < a. Because u (wn) → a, for each such k we can find m (nk)

such that u (wm(nk)) > u (znk
) and m (nk) increases in k. Thus we have two sequences

(znk
) , (wm(nk)) ⊂ X1, converging to z and w, respectively, with wm(nk) ≻ znk

. By A2, we

get w ≿ z, a contradiction. By a similar argument, if u (wn) > a occurs infinitely often, we

select such a subsequence u (wnk
) > a and u (zm(nk)) < u (wnk

) and w ≿ z follows again.

Thus, ∃N such that, ∀n ≥ N we have both u (zn) ≥ a and u (wn) ≤ a. ◻
Equipped with this Claim we turn to prove the lemma. Assume that x, y ∈ X0 satisfy

u (x) = u (y) but x ≻ y. Because X0 is connected and ≿ satisfies A2, we have to have z ∈ X0

such that x ≻ z ≻ y. Applying the same reasoning to z and y we can also get w ∈ X0 such

that x ≻ z ≻ w ≻ y.

Let a = u (x) = u (y). Applying Lemma 14, we know that x ≻ z ≻ w ≻ y and, indeed,

x ≿ z ≿ w ≿ y implies u (x) ≥ u (z) ≥ u (w) ≥ u (y) and thus we have u (x) = u (z) = u (w) =
u (y) = a.

Let there be sequences (xn) , (zn) , (wn) , (yn) ⊂X1 converging to x, z,w, y, respectively.

Applying the Claim to x ≻ z, we conclude that, from some N1 on, u (zn) ≤ a. Applying

the same Claim to w ≻ y, we find that, from some N2 on, u (wn) ≥ a. However, when

we apply it to z ≻ w we find that, from some N3 on, u (zn) ≥ a and u (wn) ≤ a. For

n ≥ max(N1,N2,N3) we have u (zn) = u (wn) = a. This means that zn ∼ wn and A2 yields

z ∼ w, a contradiction. ◻

C.2 Examples

We use two continuity axioms, A2 and A3. A2 seems to be rather strong, and, as men-

tioned above, if we drop the comparability restriction, it is, per se,1 stronger than the

standard continuity assumption of consumer theory. Moreover, if we drop the comparabil-

ity restriction, the two axioms are equivalent (for a weak order). Specifically, if we define

A2*. Universal Weak Preference Continuity: For all sequences xn → x and

yn → y, if xn ≿ yn for all n, then x ≿ y.

A3*. Universal Strict Preference Continuity: For all sequences xn → x and

yn → y, and all z,w ∈X, if xn ≿ z ≻ w ≿ yn for all n, then x ≻ y.

1That is, without A1 necessarily assumed.
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We can state

Observation 1 If ≿ is a weak order on X, then A2* and A3* are equivalent.

Proof: Assume first that ≿ satisfies A2*. Then for the bundles in A3* we have x ≿ z

and w ≿ y, which implies x ≻ y by transitivity.

Next, assume that ≿ satisfies A3*. We first claim that, for all sequences xn → x and

yn → y, if x ≻ y, then there exists an N such that x ≻ yn and xn ≻ y for all n > N . To see

this, suppose that the contrary holds. If yn ≿ x for infinitely many n’s, then for these n’s

we have yn ≿ x ≻ y ≿ y, which by A3* implies y ≻ y, a contradiction. Alternatively, y ≿ xn

for infinitely many n’s would imply x ≿ x ≻ y ≿ xn and x ≻ x.

To see that A2* holds, let there be given sequences xn → x and yn → y, such that

xn ≿ yn for all n, and assume that, contrary to our claim, y ≻ x. For all n large enough,

y ≻ xn ≿ yn ≻ x by the argument above. Fix such a k so that y ≻ xk ≿ yk ≻ x. Apply the

argument again to conclude that, for some N , we have yn ≻ yk for all n > N . Since xn ≿ yn

for all n, we have by transitivity xn ≻ yk for all n > N . So we have xn ≻ yk ≻ x ≿ x for all

n > N , which by A3* implies x ≻ x, an impossibility. ◻

In light of this equivalence of the “universal” versions of the axioms (applying to all

sequences, rather than only to comparable ones), one may wonder whether A3 is also

needed, and, if so, maybe A3 can be assumed but A2 can be dispensed with. In the

following we provide a few examples that show that none of the axioms is redundant. In

the first five examples we have n = 2, X = [0,10]2 and d = (1,0), so that the principle is

satisfied on the x2 axis (X0 consists of all the points with x1 = 0) but not off the axis (X0

consists of all the points with x1 > 0). We define ≿ by a numerical function v so that A1 is

satisfied in all examples.

C.2.1 Example 1: A2 without A3 (I)

Let v be given by2:

v (x1, x2) =
⎧⎪⎪⎨⎪⎪⎩

3 x1 = 0

sin ( 1

x1
) x1 > 0

So the x2 axis (x1 = 0) is an indifference class that is preferred to anything else. Preference

off the axis depend only on x1, in a continuous way on the interior (x1 > 0), but in a way

2Here and in the sequel we drop one set of parentheses for clarity. That is, ud ((x1, x2)) is denoted

ud (x1, x2).
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that has no limit as we approach x1 = 0.

To see that A2 is satisfied, consider xn → x and yn → y with xn ≿ yn as in the antecedents

of A2. Then if x, y ∈ X0, the consequent x ≿ y follows as x ∼ y for any x, y ∈ X0. And

if x, y ∈ X1, then from some point on xn, yn ∈ X
1 and the consequent follows from the

continuity of v on X1. However, A3 isn’t satisfied. More specifically, the claim of Lemma

9, which is an implication of A3, does not hold. To see this, define xn = ( 1

(2n+ 1

2
)π
,1);

yn = ( 1

(2n+ 3

2
)π
,1) and x = (0,1) so that xn, yn → x. Let z = ( 2

π
,1) and w = ( 2

3π
,1) so that

v (xn) = v (z) = 1 and v (yn) = v (w) = −1. Thus, xn ≿ z and w ≿ yn but w ≿ z doesn’t hold.

◻

C.2.2 Example 2: A2 without A3 (II)

The previous example relies on the absence of a limit – preferences on X1 have no “Cauchy

sequences”. The next example shows that this is only one problem that may arise, and

that A3 may not hold even if preferences are very well-behaved on each of X0,X1. Let v

be given by:

v (x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2 x1 = 0

x2 − 3 x1 > 0, x2 < 5

x2 − 2 x1 > 0, x2 = 5

x2 − 1 x1 > 0, x2 > 5

In the subspace x1 > 0, ≿ could also be represented by v′ (x1, x2) = x2−2 and it is clearly

continuous there. But v is defined by taking v′ (x1, x2) = 3 (corresponding to x2 = 5) as

a watershed, shifting the region v′ (x1, x2) > 3 (corresponding to x2 > 5) up by 1 and the

region v′ (x1, x2) < 3 (corresponding to x2 < 5) down by 1. This generates “holes” in the

range of U that could be skipped if we only had to worry about x1 > 0. Yet, we cannot

re-define U on this range to be continuous because we have points on the x2 axis (x1 = 0)

that are in between preference-wise.

To see that A2 is satisfied, consider xn → x and yn → y with xn ≿ yn as in the antecedents

of A2. Then if x, y ∈ X0, the consequent x ≿ y follows because v is obviously continuous

on X0. And if x, y ∈ X1, then from some point on xn, yn ∈ X
1 and the consequent follows

from the fact that on X1 the relation ≿ could also be represented by v′ which is continuous

on X1. However, A3 is violated. To see this, let xn = (1,5 + 1

n
) and yn = (1,5 − 1

n
) with

x = (1,5) being their common limit. Take z = (0,4) and w = (0,3) so that xn ≿ z and
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w ≿ yn because v (1,5 + 1

n
) = 4 + 1

n
> v (0,4) and v (0,3) = 3 > 2 + 1

n
= v (1,5 − 1

n
). However,

w ≿ z doesn’t hold. Thus, the claim of Lemma 9 is again violated. ◻

C.2.3 Example 3: Lemma 9

The next example satisfies the conclusion of Lemma 9 but not the other properties. Let v

be defined by:

v (x1, x2) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x2 x1 = 0

x2 − 1 x1 > 0, x2 < 5

9 − x2 x1 > 0, x2 ≥ 5

That is, as long as x2 ≤ 5 preferences are monotone in x2 with a “jump” at the x2 axis.

However, when x2 is above 5, the direction of preferences in the interior (x1 > 0) reverses,

but not on the axis.

These preferences do not satisfy A2. For example, let xn = ( 1n ,4) , yn = ( 1n ,6) with

x = (0,4) and y = (0,6). Then we have v (xn) = v (yn) = 3 and thus xn ≿ yn, but v (x) = 4 <
6 = v (y) so that x ≿ y fails to hold.

At the same time, the conclusion of Lemma 9 holds. To see this, let xn → x and

yn → x. As v is uniformly continuous both on X0 and on X1, lim v (xn) and lim v (yn)
exist and they are equal. This means that there can be no a = v (z) and b = v (w) such
that v (xn) ≥ a > b ≥ v (yn) for all n, and if xn ≿ z and w ≿ yn for all n, w ≿ z has to follow.

Finally, these preferences also do not satisfy A3. To see this, we can take xn =

( 1
n
,4) , yn = ( 1n ,7) so that v (xn) = 3 and v (yn) = 2. For z = (0,3) and w = (0,2) we

have v (z) = 3, v (w) = 2 so that xn ≿ z ≻ w ≿ yn. But the limit points, x = (0,4) and

y = (0,7) do not satisfy x ≻ y (in fact, the converse holds, that is, y ≻ x). ◻

C.2.4 Example 4: A2 and Lemma 9 without A3

Next consider v defined by :

v (x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2 − 2 x1 > 0

x2 x1 = 0, x2 < 4

4 x1 = 0, 4 ≤ x2 ≤ 5

x2 − 1 x1 = 0, x2 > 5
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Thus, along the axis x1 = 0, preferences are represented by a non-decreasing continuous

function of x2 that is constant on a given interval, and off it (x1 > 0) they could also be

represented by x2.

We claim that these preferences satisfy A2 and the conclusion of Lemma 9 but not A3.

Starting with A2, consider xn → x and yn → y with xn ≿ yn as in the antecedents of A2.

Then if xn, yn ∈ X
0, the consequent x ≿ y follows because v is continuous on X0. And if

xn, yn, x, y ∈ X
1, the consequent follows from the fact that on X1 the relation ≿ could also

be represented by v′ = x2. We are left with the interesting case in which xn, yn ∈ X
1 but

x, y ∈ X0. Because xn ≿ yn, we know that the second component of xn is at least as high

as is that of yn, and it follows that the same inequality holds in the limit and x ≿ y.

The conclusion of Lemma 9 also holds because v is uniformly continuous on each of X0

and X1. Thus, xn → x and yn → x imply that lim v (xn) = lim v (yn) (and that both exist).

However, A3 fails to hold. To see this, consider xn = ( 1n ,4) , yn = ( 1n ,5) with x = (0,4)
and y = (0,5). For z = (0,3) and w = (0,2) we have U (z) = 3,U (w) = 2 so that yn ≿ z ≻

w ≿ xn. But for limit points x ∼ y, in violation of the axiom. ◻

C.2.5 Example 5: A3 without A2

Finally, we show that A3 does not imply A2. Let

v (x1, x2) =
⎧⎪⎪⎨⎪⎪⎩
−1 x1 > 0

x2 x1 = 0

That is, the entire X1 is a single indifference class that is below, preference-wise, the entire

x2 axis. We claim that these preferences satisfy A3 but not A2.

To see that A3 holds, consider (xn) , (yn) and x, y, z,w in X such that xn → x and

yn → y and xn ≿ z ≻ w ≿ yn. If (xn) , (yn) ⊂ X0 then we have x, y ∈ X0. Because v is

simply x2 on X0, the conclusion follows. If (xn) , (yn) ⊂X1 we cannot have xn ≿ z ≻ w ≿ yn

because xn ∼ yn. Thus, A3 holds. However, A2 can easily seen to be violated. For example,

xn = ( 1n ,4) , yn = ( 1n ,5) satisfy xn ≿ yn but at the limit we get (0,5) ≻ (0,4). ◻
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C.2.6 Example 6: The Role of Connectedness

The following example shows that for Theorem 2 to hold, the set X has to be connected.

Let

X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x1, x2)

RRRRRRRRRRRRRRRRRRRRRRR

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1

or

2 ≤ x2 ≤ 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
and define the following two functions on X:

u (x1, x2) =
⎧⎪⎪⎨⎪⎪⎩
−x1 0 ≤ x2 ≤ 1

x1 2 ≤ x2 ≤ 3

v (x1, x2) =
⎧⎪⎪⎨⎪⎪⎩
−x1 0 ≤ x2 ≤ 1

x1 + 1 2 ≤ x2 ≤ 3

Define ≿ on X by maximization of v. As v is continuous, ≿ satisfies axioms A1-A3.

Note that u, restricted to X1 = { (x1, x2) ∣x1 > 0 }, represents ≿ as well. Indeed, it has

a continuous extension to X – u itself. However, it does not represent ≿ on X0, as u is

constant on X0 which isn’t an equivalence class of ≿ (say, (2,0) ≻ (1,0)). ◻
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