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Abstract

We consider a reasoner who selects a set of distributions given a
database of observations. A likelihood region is monotonic with respect
to the likelihood function. We provide axiomatic foundations for such a
selection rule. Starting with an abstract set of theories, we propose con-
ditions on choice functions (across different databases) for which there
exists a statistical model such that the choice function is a likelihood
region relative to that model, for the general case and for the case of a
fixed likelihood-ratio threshold. We interpret the results as supporting
the notion of likelihood regions for the selection of theories.

1 Introduction

Consider a government who needs to make decisions in novel situations, where

scientific data exist, but do not suffi ce to pin down a single probability distri-

bution. For example, the government has to decide how to tax CO2 emission.

Scientists may agree that emission contributes to global warming, but have

different estimates of the temperature distribution 30 years hence, given dif-

ferent levels of emission.1 Or, facing a new pandemic, the government has
∗We thank Fuad Aleskerov, Yoav Benjamini, Mira Frick, Paola Manzini, Marco Mar-

iotti, Isaac Meilijson, Efe Ok, Saharon Rosset, and Gilles Stoltz for comments and refer-
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1See, for example, Heal and Millner (2014).
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to determine its vaccination policy. Medical evidence accumulates, but, at

present, it doesn’t suffi ce to have an agreed-upon estimate of the probabil-

ity of various complications. In such cases the decision maker needs to act

without having suffi cient data to single out a point estimate of the underlying

probability distribution. Further, she does not have any reliable data on which

to base a prior probability over the varying theories. A decision maker who

is accountable to a wide, heterogenous public may wish to stick to estimation

that is as objective as possible, selecting a set of theories without specifying a

Bayesian posterior over them.

The problem is clearly statistical in nature, and, indeed, several approaches

have been proposed in the literature to deal with it. Specifically, it stands

to reason to select distributions that obtain a certain likelihood threshold.

Specifically, assume that, given a database of observations, D, and a collection

of possible distributions, F , the reasoner has to select a subset of distributions

for consideration, to be denoted CD (F ). Likelihood regions are monotonic in

the likelihood function. That is, denoting the likelihood function by L (· |D ),

for any two distributions f, g in F , if L (f |D ) ≥ L (g |D ), then, if g is included

in the set CD (F ), so should be f . (Equivalently, if f is excluded from the set,

so should be g.) A function CD (F ) that satisfies this property for all databases

D is referred to as monotonic with respect to L. The sets it generates, CD (F ),

are called likelihood regions with respect to the statistical model (that is, the

set of distributions).

A likelihood region CD (F ) thus includes the top-tier likelihood distribu-

tions: there exists some γ ∈ [0, 1] so that

CD (F ) =

{
f ∈ F

∣∣∣∣L (f |D ) ≥ γ sup
g∈F

L (g |D )

}
(1)

or

CD (F ) =

{
f ∈ F

∣∣∣∣L (f |D ) > γ sup
g∈F

L (g |D )

}
(2)

In the case of a finite set of distributions, the threshold γ is typically not

unique and it can be chosen to obtain a representation according to (1) or to
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(2). More generally, the intuitive likelihood-monotonicity condition does not

imply that either of these representations should hold for all databases D.2

The choice of the threshold γ reflects the reasoner’s degree of prudence,

where a more conservative approach would be associated with a lower γ. When

γ is very low, the reasoner hardly learns anything from the data, considering as

relevant many possible distributions. When γ is close to 1, the reasoner tends

to dismiss theories quite easily. The choice of γ thus leaves room for subjective

judgment. Note, however, that this is a statistician’s choice, as are the level of

confidence for confidence sets and the level of significance for hypothesis tests.

A conservative statistical choice, of a low γ, may end up justifying highly

non-conservative decisions (for example, if the decision maker maximizes the

maximal expected utility over the set of “relevant”distributions).

In this paper we axiomatize choice functions that can be rationalized as

likelihood regions for some statistical model. We consider a set of abstract

“theories”F , where a theory f ∈ F is no more than a symbol. We use the term
“theory”to highlight the fact that, for the time being, it is not associated with

any distribution over observations, or any other data, numerical or otherwise.

The association of distributions to theories will be derived from the reasoner’s

choice function C. That is, in the spirit of the revealed preferences paradigm,

we are interested in conditions on the function C under which the reasoner

selects theories as if she had a statistical model in mind, and she picked

likelihood regions relative to this statistical model.

More specifically, we assume that, at each period, the reasoner observes

x ∈ X. A database is a collection of observations, and we implicitly assume
that their order does not matter (in the spirit of de Finetti’s exchangeability).

Thus, a database D is simply a counting function, indicating how many times

each x was observed. Given such a (finite) D, we assume that the reasoner

can select theories out of various subsets of F : for A ⊂ F , CD (A) ⊂ A

are the theories that the reasoner considers relevant. We propose conditions

on the choice function CD (A), relating its values for different sets (A) and

2See Epstein and Schneider (2007), who use such sets to select the distributions that are
to be updated in a Bayesian fashion.
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different databases (D), under which there exists a statistical model relative

to which CD (A) is a likelihood region for all D,A. That is, we derive, for

each observation x ∈ X and each theory f ∈ F , a number p (x |f ) ∈ [0, 1],

interpreted as the conditional probability of observation x given theory f ,

and we show that, for each D,A, CD (A) is monotonic with respect to the

associated likelihood function L (· |D ).

Monotonicity of CD (A) with respect to a likelihood function L (· |D ) allows

the threshold γ to depend both on the choice set (A) and the database (D).

It is natural to wonder when such a threshold is independent of these. We

therefore suggest additional axioms that yield such a result. Specifically, our

axioms yield a quasi-representation of the choice functions so that there exists

a single γ ∈ (0, 1] such that, for every D ∈ D and every A ⊂ F , and every

f ∈ A

L (f |D) > γ sup
g∈A

L (g|D) ⇒ f ∈ CD (A)

L (f |D) < γ sup
g∈A

L (g|D) ⇒ f /∈ CD (A)

Observe that a quasi-representation does not specify the status of theories

whose likelihood value is precisely at γ sup.

Our results can be interpreted both descriptively and normatively. A de-

scriptive3 interpretation would suggest that if a reasoner —a person, an orga-

nization, a group of scientists or statisticians —selects theories out of available

sets while satisfying our axioms, her choice can be represented by a statistical

model, with respect to which she selects likelihood regions. According to this

interpretation, the reasoner need not be explicitly or even consciously using

a statistical model. The model is silent on the mental, computational, or or-

ganizational processes that lead to theory selection. As long as the selection

is made in accordance with the axioms, such an underlying statistical model

exists, and it can (in principle) be estimated from past choice data for pre-

diction of future choices.4 Adopting a normative interpretation, our results
3We do not distinguish here between “descriptive”and “positive”, nor between “norma-

tive”and “prescriptive”.
4The statistical model we derive is unique only up to certain transformations, as will be
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may convince a reasoner that she would like to select sets of theories that are

likelihood regions. Further, the axioms and related analysis may assist the

reasoner in eliciting a statistical model that best captures her beliefs.

The results presented here derive a statistical model from presumably-

observable choices, without assuming that such a model is explicitly given.

However, if a statistical model is given, it should surely not be ignored. To

the contrary, we would expect the model of the reasoner to coincide with the

objectively-given one, and our results would only serve as an additional argu-

ment for the selection of likelihood regions, whether the model is used descrip-

tively or normatively. The main import of the model is, however, for the case

of theories that are not structured in the mold of a statistical model. Taking

a normative interpretation, the model may convince a reasoner that it makes

sense to adopt a statistical model and choose likelihood regions with respect to

this model. Admittedly, an additional source of subjectivity is introduced in

this case: different reasoners may assign different conditional probabilities to

the theories at hand. Yet, agreement over the general framework may reduce

divergence of opinions. In a descriptive interpretation, the same argument

would apply to an economist who models the reasoner: the axiomatization

might make it more reasonable to assume that reasoners might make theory

selection as if they had a statistical model in mind.5

The rest of this paper is organized as follows. Section 2 is devoted to choice-

theoretic foundations, where we fix the database D and impose conditions on

choice functions that guarantee that they be monotonic with respect to some

order. Our conditions provide a new characterization of choice functions that

correspond to semiorders (Luce, 1956). Section 3 embeds the choice-theoretic

setup in the database context, and imposes additional conditions on CD (A),

focusing on the way it changes across databases. Combining the conditions, we

derive a statistical model relative to which CD (A) is a likelihood region for all

D,A. The main result of this section also discusses uniqueness of the statistical

specified in the formal statement of the main theorem.
5The situation is analogous to axiomatizations of subjective probability, which are not

supposed to suggest that objective probabilities be ignored.
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model and it is preceded by a lemma that states a precise equivalence result.

Next, Section 4 provides the axiomatization of the quasi-representation with

a fixed threshold for all subsets and databases. Section 5 concludes with a

discussion.

2 Choice Theoretic Foundations

In this section we focus on a given database D, and suppress it from the

notation. A few words of introduction might be useful to place the analysis in

the context of choice theory.

We are interested in choice functions that are monotonic with respect to a

function L, that is, functions C (A) for which, for every A there exists γ ∈ [0, 1]

such that,

C (A) =

{
f ∈ A

∣∣∣∣L (f) ≥ (>)γ sup
g∈A

L (g)

}
In order to derive the function L from choice data, we will impose additional

conditions, which will be equivalent to the existence of a monotonic transfor-

mation of L, for which γ is independent of A. For a given database D, we

may assume without loss of generality that the transformation is the iden-

tity. Thus we are interested in choice functions that can be represented by a

function u : F → R and a constant ∆ ≥ 0 such that

C (A) =

{
f ∈ A

∣∣∣∣u (f) ≥ (>) max
g∈A

u (g)−∆

}
(3)

(taking u = log (L) and ∆ = log
(

1
γ

)
). While our motivation is the selection of

theories given databases of observations, choice functions of this nature appear

in other set-ups as well. In particular, decision makers or players in a game

might have a utility function u, and only ε-maximize it. This might result from

bounded rationality, unmodeled computation costs, or limited ability to dis-

cern differences in utility. Specifically, based on the literature in psychophysics

(dating back to Weber, 1834, Fechner, 1868), we may consider a strict pref-

erence relation P that is a semiorder according to Luce (1956). In a finite
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setup, we may think of semiorders as relations P that can be represented by

a function u : F → R and a constant ∆ ≥ 0 such that, for all f, g,

gPf ⇔ u (g)− u (f) > ∆. (4)

Clearly, the representation (3) can be thought of as the set of P -undominated

elements in the set A.

There is a rather rich literature on choice functions that can be represented

as P -undominated elements for various partial orders P , and for semiorders in

particular. Jamison and Lau (1973) presented the first result regarding semi-

orders; Fishburn (1975) corrected the stated version and added conditions for

the more general case of P being an interval order.6 In their setup a binary

relation P was assumed, and the choice function C (A) was defined as the

set of P -undominated elements from each subset A. Agaev and Aleskerov

(1993) provided conditions for C to be determined by an interval order P , and

Aleskerov, Bouyssou, and Monjardet (2007) dealt with the case of semiorders

as well, complementing the axiomatization by a “PO”condition, which guar-
antees that the choice function can indeed be derived from a partial order (see

Theorem 3.8 on p. 92). van Rooij (2008) deals with a similar problem, where

there are two correspondences, one selecting the “good”and the other —the

“bad”alternatives from each set A. Manzini and Mariotti (2012) characterize

choice functions that can be represented as the selection of lexicographically-

undominated elements according to some sequence of semiorders (but the se-

quence may well be longer than 1). Frick (2016) axiomatizes choice functions

that have monotone threshold representations, that is, representations in which

the threshold (∆) can depend on the set (A). Importantly, she also provides

a characterization for the case of a fixed ∆ (Lemma 1(i), p. 765).

However, in order to relate the choice functions across different databases,

we need a more explicit reference to the underlying weak order associated

with the semiorder in question (this is the weak order which corresponds to

the likelihood function we intend to derive). Given that, we find a different

6An interval order can be thought of as a binary relation for which a representation as
above exists, where ∆ is allowed to depend on x or on y. See a formal definition and more
details in the Appendix.
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set of axioms to be more intuitive (though this is clearly a matter of taste).

We thus provide here a different characterization of choice functions that can

be represented as P -undominated elements for a semiorder P . A by-product

of our axiomatization is the numerical representation of these choice functions

—and the associated semiorders —for sets of arbitrary cardinality. Beja and

Gilboa (1992) provide conditions for such a representation, including sepa-

rability. While these conditions can be translated to the language of choice

functions, we find the resulting axioms rather cumbersome. In this paper the

need for special conditions for infinite sets is obviated, because the numerical

representation will be based on the context of the databases. As in Gilboa and

Schmeidler (2003), most of the mathematical work (such as the use of sepa-

rating hyperplane theorems) is done in the space of “contexts”(the different

databases) rather than the alternatives themselves.

2.1 Axiomatic Characterization

We now turn to the formal analysis. Let F be a set. For any A ⊂ F , let

C (A) ⊂ A be a selection from A. If A is finite and nonempty, C (A) is

assumed to be nonempty as well. We wish to consider choice functions that

select “top-tier elements”of each set A. Consider the standard axioms,

A1: Sen’s α: If f ∈ B ⊂ A and f ∈ C(A), then f ∈ C(B).

Sen’s β: If f, g ∈ C(A), A ⊂ B, and g ∈ C(B), then f ∈ C(B).

Sen’s α is a natural axiom for our purposes (and thus received the signifier

A1): if f is among the top-tier elements in a larger set, it should also be

among the top-tier ones in any subset thereof (that still contains f). By

contrast, Sen’s β is too strong for our purposes: it is possible that both f, g

are among the top-tier elements in a smaller set (A), but when additional

elements are considered (B\A), which may be better then both, the inferiority
of f becomes apparent, while g remains “good enough”to be selected. In a

standard choice setting, this might appear to be a result of bounded rationality,

or at least (in the case of semiorders) of bounded perception abilities. By

contrast, in our motivating example the objects to be ranked are probability
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distributions, and, bearing in mind that the data one observes are inherently

random, the inclusion of theories that are not among the maximizers of the

likelihood function is viewed as a conscious, rational decision of a reasoner, akin

to a statistician who constructs a confidence interval around a point estimator.

Be that as it may, the type of choice functions considered here need not

satisfy Sen’s β and thus not the IIA in general. Specifically, choosing options

that are close enough to the maximizers makes the choice procedure context-

dependent. We note that, under Sen’s α, for all A,B, we have C (A ∪B) ⊂
C (A) ∪ C (B), so that this axiom restricts the choice set of the union “from

above”, saying it cannot be too large. In a sense, Sen’s β could be viewed as

requiring that it not be too small either. While we do not require this axiom,

we have a comparable one that guarantees that the union operation doesn’t

make too many elements drop out of the chosen set:

A2 Union: If f ∈ C(A) and g ∈ C (B), then f ∈ C(A ∪ B) or g ∈
C(A ∪B).

Axiom A2 thus deals with expansion of a set, say from A to A∪B. Clearly,
the addition of new elements may make a highly-ranked element, f , less highly-

ranked in the new, larger set. Intuitively, this would be the case if among the

new elements there are some that are more highly-ranked than f . But in that

case, those that were suffi ciently highly-ranked in B should also remain so

in the union. That is, the union of two sets can’t simultaneously dethrone

two elements that were chosen in each of the sets separately. It can be easily

verified that, in the presence of Sen’s α, Sen’s β implies Union.

We next define a binary relation over elements of F that is intended to

indicate strict preference.

Definition: For f, g ∈ F , f � g if one of the following holds:

(i) there exists a set A such that f, g ∈ A, f ∈ C (A) and g /∈ C (A);

(ii) there exists a set B such that f, g /∈ B, z ∈ B, and z ∈ C (B ∪ {g}),
while z /∈ C (B ∪ {f}).

We can refer to clause (i) of the definition as directly revealed preference,

and to (ii) —as indirectly revealed preference. Indeed, clause (i) deals with a
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choice from a set that contains both alternatives, and thus involves a direct

comparison between them (among other elements). By contrast, clause (ii)

involves choices in different contexts, none of which contains both alternatives.

Yet, comparing choices in these two contexts indicates a higher ranking of f

as compared to g: f is suffi ciently highly-ranked to make another alternative,

z, appear less attractive, while g isn’t: adding g to B leaves z among the

top-rated, whereas adding f to B dethrones z.

We can now state an additional axiom:

A3 Monotonicity: If f, g ∈ A, g ∈ C (A) and f � g, then f ∈ C(A).

Axiom A3 says that, if g is ranked suffi ciently highly to be selected out of

A, and f has been revealed to be ranked above g in another context, f should

also be considered suffi ciently high-ranking to be selected out of A.

The representation result can now be stated:

Proposition 1 If F is finite, a choice function C on F satisfies A1-A3 iff there
exist a function u : F → R and ∆ ≥ 0 such that, for all A ⊂ F ,

C (A) = { f ∈ A |@g ∈ A, u (g)− u (f) > ∆}

=

{
f ∈ A

∣∣∣∣u (f) ≥ max
g∈A

u (g)−∆

}
For the case of an infinite set F we need an additional axiom:

A4 Continuity: Assume that (Aτ )τ∈Υ is an increasing chain (Aτ ⊂ Aτ ′ ⊂
F for τ < τ ′ where < is a linear order on Υ). If f ∈ C (Aτ ) for all τ ∈ Υ, then

f ∈ C(∪τ∈ΥAτ ).

Axiom A4 states that an element f that is suffi ciently highly ranked to be

included in the choice from any set Aτ should also be suffi ciently highly ranked

in the limit (the union of the increasing chain). Alternatively, if f is not at the

top of ∪τ∈ΥAτ , there should be some large enough τ for which f will already

be ruled out when only Aτ is considered. Equipped with this axiom we can

formulate the next result:
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Theorem 1 A choice function C on F satisfies A1-A4 iff there exist a semi-

order P on F , such that, for all A ⊂ F ,

C (A) = { f ∈ A |@g ∈ A, gPf }

For the sake of completeness we also state a similar result for interval orders

(Fishburn 1970, 1985):

Proposition 2 A choice function C satisfies Sen’s α, Union, and Continuity

iff there exists an interval order P on F such that, for all A ⊂ F ,

C (A) = { f ∈ A |@g ∈ A, gPf }

Interval orders are not suffi ciently structured to obtain the result we seek,

because they do not induce a well-defined weak order.7 As in the case of a

semiorder, if there are only finitely many alternatives, Continuity holds vacu-

ously and can thus be dropped from the statement of the proposition.

3 Likelihood Regions

Let X be the set of (types of) observations. The set of databases is defined as

D ≡ {D |D : X → Z+,
∑
x∈X

D(x) <∞}.

A database D ∈ D is interpreted as a counter vector, where D(x) counts

how many observations of type x appear in the database represented by D.

Algebraic operations on D are performed pointwise. Thus, for D,D′ ∈ D and
k ≥ 0, D + D′ ∈ D, and kD ∈ D are well-defined. Similarly, the inequality
D ≥ D′ is read pointwise. For D ∈ D we define the support to be suppD =

{x ∈ X |D (x) > 0}.
Let F be a set of distributions. For concreteness, one may bear in mind

a parametric problem, where the distribution of a random variable is known

7For the sake of intuition, an interval order can be thought of by its representation: an
alternative f is associated with an interval of values [b (f) , e (f)] with b (f) ≤ e (f), and
gPf iff b (g) > e (f). In the case b (f) < b (g) < e (g) < e (f) neither P nor any binary
relation we derive from it will rank f and g.
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up to finitely many parameters (but allow only for a limited precision in the

measurement of the parameters). In such a setup all distributions are deemed

to have the same level of complexity and, intuitively, the only criterion for

evaluating them is the degree to which they explain the observations.8 How-

ever, in the formal analysis that follows the set of distributions may be any set

of theories. At this point this is an abstract set, and its statistical meaning —

specifically, the distribution that each f ∈ F induces on the observations X

—will be derived from the reasoner’s choices of elements of F given databases

D ∈ D.

Both X and F may be finite or not. To avoid trivial cases, we assume

that each has at least two elements. Next, we assume that, for each D ∈ D,
and for each nonempty A ⊂ F , there exists CD (A) ⊂ A interpreted as the set

of distributions in A that are considered relevant for decision making given

the database D. If A is nonempty and finite, we assume that C (A) is also

nonempty.9

We impose the following assumptions:

P1Choice: For everyD ∈ D, CD on F satisfies Sen’s α, Union, Monotonic-
ity, and Continuity.

Given the analysis in Section 2, we know that for every D ∈ D there is a
semiorder PD on F such that, for every A ⊂ F , CD (A) ⊂ A consists precisely

of the PD-undominated distributions in A. Let %D be the associated weak

order on F , with �D and ∼D denoting its asymmetric and symmetric parts,
respectively.

P2 Combination: For every D,D′ ∈ D and every f, g ∈ F , f %D g

(f �D g) and f %D′ g imply f %D+D′ g (f �D+D′ g).

The Combination axiom deals with the union of databases, and it states

8In the Discussion we describe a more general model, in which the distributions may
vary in terms of simplicity or some other criteria, such as subjective prior beliefs.

9Observe that in our setup there is no loss of generality in assuming CD (A) 6= ∅ even
for an infinite A: the likelihood function is bounded from above by 1. Thus, the set C (A) ={
f ∈ A

∣∣L (f) ≥ γ supg∈A L (g)
}
will be empty only if the maxg∈A L (g) is not obtained

and γ = 1.
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that, if each of two databases, D and D′, indicates that distribution f is at

least as likely as g, the union of the two cannot suggest the reversed ranking.

Observe that, D,D′ being counter vectors, the union of the databases is cap-

tured by the addition of these vectors (D + D′), corresponding to the union

of disjoint sets of observations. The axiom is stated for weak orders (f %D g

and f %D′ g) but it is strengthened to require that, if one of them is strict

(f �D g), the same applies to the unified database D +D′.

The next axiom is Archimedean in nature:

P3 Archimedeanity: For every D,D′ ∈ D and every f, g ⊂ F , if f �D g,

then there exists l ∈ N such that f �
lD+D′ g.

P3 assumes that a database D makes a distribution f more likely than

another distribution g. It then requires that, even if we start with a database

D′ that favors g over f , suffi ciently many repetitions of D will eventually

overwhelm the evidence in D′.

We need the following assumption, which may be viewed as richness of

potential observations relative to the distributions:

P4 Diversity: For every list (f, g, h, k) of distinct elements of F there

exists D ∈ D such that f �D g �D h �D k. If |F | < 4, then for any strict

ordering of the elements of F there existsD ∈ D such that �D is that ordering.

To state the precise characterization result, we first define a matrix v :

F × X → R to be diversified if there are no elements f, g, h, k ∈ F with

g, h, k 6= f and λ, µ, θ ∈ R with λ + µ + θ = 1 such that v(f, ·) ≤ λv(g, ·)) +

µv(h, ·) + θv(k, ·). That is, v is diversified if no row in v is dominated by an
affi ne combination of three (or fewer) other rows.

Lemma 1 Let there be given X, F , and choice functions {CD}D∈D. Then the
following two statements are equivalent:

(i) {CD}D∈D satisfy P1-P4;
(ii) There is a diversified matrix v : F×X → R such that, for every D ∈ D

there exists a semiorder PD such that, for all A,

CD (A) = { f ∈ A |@g ∈ A, gPDf }
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and%D, its associated weak order, is represented by UD (·) ≡
∑

x∈X D(x)v(·, x).10

The lemma combines the result of the previous section with the main result

of Gilboa and Schmeidler (2003).

Finally, we impose another richness assumption, guaranteeing a maximal

element for each singleton database. Specifically, for x ∈ X, let Dx ∈ D satisfy
Dx (x) = 1 and Dx (y) = 0 for y 6= x. We require

P5 Maximality: For every x ∈ X, %Dx has a maximal element (in F ).

We can now state our first main result.

Proposition 3 Let there be given X, F , and choice functions {CD}D∈D that
satisfy P1-P5. There exist, for each x ∈ X and f ∈ F , a number p (x|f) ∈
(0, 1], such that, for every D ∈ D and every A ⊂ F , CD (A) is a likelihood

region relative to the likelihood function

L (f |D) =
∏

{x∈X |D(x)>0}

[p (x|f)]D(x)

Further, the conditional probabilities (p (x|f))x,f are unique up to multi-

plication of (p (x|·))x,· by λx > 0 and raising (p (·|·))·,· to a positive power.

4 A Fixed Threshold

In this section we consider additional axioms, which would guarantee that all

likelihood regions are defined by the same threshold γ. In the following, for

any database D ∈ D let PD be the semiorder associated with CD (·), namely,
xPDy iff CD ({x, y}) = {x}.

P6 Database Monotonicity:
10That is, for every f, g ∈ F , f %D g iff

UD (f) ≥ UD (g)

for
UD (f) =

∑
x∈X

D(x)v(f, x)
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(i) For every f, g ∈ F , and every D,D′ ∈ D, if fPDg and f %D′ g, then
fP(D+D′)g.

(ii) For every f, g ∈ F , and every D,D′ ∈ D, if ¬ (fPDg) and g %D′ f ,
then ¬

(
fP(D+D′)g

)
.

Part (i) of the axiom says that if, given database D, f is suffi ciently more

highly ranked than g as to exclude the latter from any set containing f , and

if according to another database D′ f is more highly ranked than g, then the

union of the databases should not only make f more highly ranked than g,

but also retain the conclusion based on D, namely that g should be excluded

from the choice set. Observe that, if g �D′ f were the case, the additional
information in D′ may weaken the evidence in favor of f contained in D,

and may even reverse the ordering. But the condition f %D′ g rules out this
possibility. Part (ii) of the axiom follows a very similar logic: starting with

¬ (fPDg), we observe that the evidence inD does not suffi ce to exclude g based

on the presence of f . (Indeed, it is even possible that the opposite happens, or,

at least that g is more highly ranked than f given D.) If we have additional

evidence, D′, that, in and of itself makes g more highly ranked than f , we

should certainly not exclude g in favor of f given the combined database.

We will also need another Archimedean axiom:

P7 P -Archimedeanity: For every f, g ∈ F , and every D ∈ D, if f �D g,

then for every D′ ∈ D there exists l ∈ N such that fP
lD+D′g.

The Archimedean axiom P3 guarantees that suffi ciently many repetitions

of a database D, which provides strict evidence in favor of f as compared

to g, would overwhelm the evidence in any other database D′. The current

axiom strengthens this requirement and demands that, with suffi ciently many

repetitions of D, the evidence in the combined database in favor of f would

suffi ce to exclude g from the chosen set. Note that the axiom is necessary for

a representation with a fixed threshold: when a database is replicated, the

log-likelihood function for any two (non-trivial) theories tends to −∞, and so
does the difference between them. (Equivalently, the likelihood ratio of the

lower-likelihood theory to the higher one tends to zero.) Hence, for suffi ciently
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many repetitions, this difference will be large enough to exceed the jnd ∆.

Finally, we impose another richness axiom:

P8 Richness: For every distinct f, g, h ∈ F , there exist distinct x, y, z ∈
X such that {%D}{D|supp(D)={x,y,z}} equals the six permutations on (f, g, h). If

|F | = 2, the corresponding condition holds for some x, y ∈ X.

Axiom P8 requires that, for every three theories, f, g, h ∈ F , one can find
observations x, y, z ∈ X such that, when considering databases consisting of

positive appearances of these observations, but only these, one obtains all

the linear orderings on (f, g, h), but only those. The fact that all six per-

mutations can be obtained is similar to the Diversity axiom P4. The main

new requirement is that, when considering only the three observations x, y, z,

there can be no non-trivial equivalences between any pair in (f, g, h). In the

language of Lemma 1, this is equivalent to the requirement that the matrix

[v(f, ·)− v(g, ·), v(f, ·)− v(h, ·)] will not consist only of numbers that are ra-
tional relative to each other. This condition will be naturally satisfied if the

matrix v denotes the log-likelihood values for continuous distributions on some

space Rk. Indeed, in this case, the set of triples x, y, z that do not satisfy the
non-equivalence condition is of measure zero in the respective space (R3k).

With these we can now state

Theorem 2 Let there be given X, F , and choice functions {CD}D∈D that
satisfy P1-P8.11 There exist, for each x ∈ X and f ∈ F , a number p (x|f) ∈
(0, 1], and there exists a unique constant γ ∈ (0, 1] such that, for every D ∈
D and every A ⊂ F , CD (A) is a likelihood region relative to the likelihood

function

L (f |D) =
∏

{x∈X |D(x)>0}

[p (x|f)]D(x)

and the threshold γ. That is, for every D ∈ D and every A ⊂ F , and every

11As mentioned above, P7 implies P3. Hence, “P1-P8”can be replaced by “P1,P2,P4-P8”.
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f ∈ A

L (f |D) > γ sup
g∈A

L (g|D) ⇒ f ∈ CD (A)

L (f |D) < γ sup
g∈A

L (g|D) ⇒ f /∈ CD (A)

Further, the conditional probabilities (p (x|f))x,f are unique up to multipli-

cation of (p (x|·))x,· by λx > 0 and raising (p (·|·))·,· to a positive power.

5 Discussion

5.1 Simplicity

Comparing distributions according to their likelihood function is a very sensi-

ble approach when the distributions are a priori on equal footing. But it can

be a rather poor idea if they differ in meaningful ways ex ante. In particular,

it is well known that, if theories vary in complexity, maximization of the like-

lihood function typically results in overfitting. Thus, one would wish to select

theories in ways that would trade off likelihood and simplicity, as in the AIC

and BIC criteria (Akaike, 1974, Schwarz, 1978).

Gilboa and Schmeidler (2011) offer an axiomatic approach to this problem,

deriving a representation of a binary relation over theories by the log-likelihood

function with an additional additive term (that depends on the theory but

not on the data). This functional form includes the AIC, where the additive

term depends only on the number of the parameters used by the theory. The

axiomatization can be adapted to our context: one would have to re-state the

axioms in that paper for the preference orders %D obtained from the choice

function CD (A). However, further analysis is called for to axiomatize other

rules, such as theory selection based on the BIC (where the additive term

depends also on the number of observations in the database).

5.2 Vague Theories

As stated in the introduction, the main significance of our result is likely to be

for situations in which the problem is not formulated in terms of a statistical
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model to begin with. For example, in geopolitical setups one may consider

theories such as “Fundamentalism is on the rise”or “Countries are becoming

more democratic”. These theories should be tested in light of evidence, and,

indeed, it seems that people do assign more credence to theories that have

predicted past events better than others. Our result may be read as a sugges-

tion to make this process more precise, by quantifying the theories (a priori)

in terms of a statistical model, and then calculating their likelihood function.

However, this idea might appear somewhat unrealistic: can a reasoner spec-

ify, ex-ante, what is the conditional probability of, say, a military coup, given

a theory which is as vague as “Fundamentalism is on the rise”? It seems that

many theories in the social sciences are hard to quantify so precisely. This dif-

ficulty suggests that one may wish to consider a more general model, in which

theories are less restrictive. For instance, a theory need not specify a single

probability for any observation, but rather provide a range of probabilities.

We believe that there is a need for more general models for these cases.

However, we mention in passing that a particular, simple generalization does

not call for a new model: if a “vague theory”is conceived of as a set of possible

distributions, we may treat each and every one of these as a separate theory

in our model. Thus, each specific theory within a vague theory would be

judged according to its own likelihood function, and the vague theory would

be implicitly judged by the highest likelihood of its constituents.

5.3 Bayesianism

Selection of theories can also be done by an appeal to a (typically subjec-

tive) probabilistic belief over the theories. Indeed, a Bayesian would have a

prior over theories, and would update it to generate a posterior. Viewed from

the Bayesian perspective, the selection of a subset of theories lacks nuance:

theories aren’t dichotomously divided into “reasonable”and “unreasonable”.

Rather, the reasoner has probabilistic beliefs about the correct theory, which

are naturally measured on a continuous scale. Moreover, this approach relies

on formidable foundations, such as Savage’s (1954) derivation of subjective

expected utility maximization.
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Despite the elegance and coherence of the Bayesian approach, which is

probably unmatched by any other method of inference and reasoning, and

despite the stunning beauty and depth of Savage’s result, we find that the

Bayesian approach is too demanding in many situations of interest. Reasoners

and scientists may find it diffi cult to assign (single) probabilities to theories

about wars and financial crises, the evolution of the planet and of its inhabi-

tants. Coming up with some probabilities, just in order to use the Bayesian

machinery, often seems arbitrary. In many situations it appears that it would

be more rational to admit that we do not know all the relevant probabilities,

rather than to pretend that we do. The present paper attempts to make a

contribution to rational selection of theories for those reasoners who find the

Bayesian model too restrictive.

6 Appendix: Proofs and Related Analysis

We divide this appendix into two: the analysis that relates to choice functions

in general, and then —to choice functions given databases.

6.1 Choice Theoretic Analysis

In order to prove the suffi ciency of the axiom in Proposition 1, Theorem 1,

and Proposition 2, several auxiliary lemmas will be useful.

6.1.1 Some lemmas

Assume first that C is a choice function satisfying A1, A2, and A4.

Lemma 2 For all A,B ⊂ F , we have C (A ∪B) ⊂ C (A) ∪ C (B).

Proof: Consider f ∈ C (A ∪B). If f ∈ A, then by Sen’s α, f ∈ C (A), and

if f ∈ B, then by the same logic, f ∈ C (B). Thus, f ∈ C (A) ∪ C (B) (and,

in fact, if f ∈ A ∩B then we also have f ∈ C (A) ∩ C (B) ). �

Note that the proof only uses Sen’s α.
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Lemma 3 For all A ⊂ F and f ∈ A, if for all g ∈ A we have f ∈ C ({f, g}),
then f ∈ C (A).

Proof: Consider first the case of a finite setA. Suppose thatA = {f, g1, g2, ..., gk}.
By induction on i ≤ k, one observes that f ∈ C ({f, g1, g2, ..., gi}) using Union
and the fact that f ∈ C ({f, gi+1}) for 0 ≤ i < k.

In case A is infinite, we need to use both Union and Continuity. Using

Zorn’s lemma, consider the set of sets B ⊂ A(⊂ F ) such that (f ∈ B and) f ∈
C (B), ordered by set inclusion. Continuity guarantees that every increasing

chain in this poset, (Bτ )τ∈Υ (Bτ ⊂ Bτ ′ ⊂ F for τ < τ ′) has an upper bound,

namely ∪τ∈ΥBτ , with f ∈ C (∪τ∈ΥBτ ). The lemma implies that there exists a

maximal element B∗ in the poset, so that f ∈ C (B∗). If B∗ = A, we are done.

Otherwise, there exists g ∈ A\B∗. We know that f ∈ C ({f, g}) and, using
Union again, this implies that f ∈ C (B∗ ∪ {g}) so that B∗ is not a maximal
element. This contradiction implies that B∗ = A and f ∈ C (A) as required.

�

Note that the proof only uses Union and Continuity.

The following lemma summarizes the previous two and suggests that, under

the axioms A1, A2, A4, binary comparisons contain all relevant information.

Lemma 4 For all A ⊂ F and f ∈ A, f ∈ C (A) iff for all g ∈ A we have

f ∈ C ({f, g}).

Proof: Lemma 3 implies the “if”direction. As for the “only if”, assume
that f ∈ C (A). If, for some g ∈ A we have f /∈ C ({f, g}) then, by Sen’s α, f
cannot be chosen out of the superset, A, of {f, g}. �

Note that the proof above only uses Sen’s α, Union, and Continuity (for

the infinite case).

Lemma 5 : If there exists a set B ⊂ F such that f, g /∈ B, f ∈ C (B ∪ {f})
and g /∈ C (B ∪ {g}), then f � g.

Proof : Consider D = B ∪ {f, g}. Because we may write D = [B ∪ {f}] ∪
{g}, with f ∈ C (B ∪ {f}) and g ∈ C ({g}), Union implies that f ∈ C (D) or
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g ∈ C (D). However, g /∈ C (B ∪ {g}) implies, using Sen’s α, that g /∈ C (D).

Thus f ∈ C (D) and f � g follows. �

Let us now assume, throughout the rest of this subsection, that C also

satisfies A3 (Monotonicity).

Lemma 6 : � is irreflexive, asymmetric, and transitive.

Proof : The fact that � is irreflexive, that is, that f � f can’t hold for

any f , is obvious from the definition. We proceed to prove asymmetry and

transitivity.

Claim: � is asymmetric.
Proof : Assume, to the contrary, that f � g and g � f for some f, g.

Distinguish between two cases:

Case 1: f � g or g � f by clause (i). Suppose, w.l.o.g., that it is f � g.

Then there exists A such that f, g ∈ A, f ∈ C (A) and g /∈ C (A). However,

Monotonicity says that, because f ∈ C (A) and g � f , we must also have

g ∈ C (A), a contradiction.

Case 2: Both f � g and g � f hold (only) by clause (ii). In this case, there

exist two sets, B and E, such that f, g /∈ B,E and two elements h ∈ B and

d ∈ E such that (f � g) [h /∈ C (B ∪ {f}) and h ∈ C (B ∪ {g})] as well as
(g � f) [d ∈ C (E ∪ {f}) and d /∈ C (E ∪ {g})]. Consider D = B ∪E ∪{f, g}.
BecauseD = [B ∪ {g}]∪[E ∪ {f}] with h ∈ C (B ∪ {g}) and d ∈ C (E ∪ {f}),
Union implies that h ∈ C (D) or d ∈ C (D). However, h /∈ C (B ∪ {f}) rules
out the former (by Sen’s α), and, similarly, d /∈ C (E ∪ {g}) rules out the
latter, a contradiction.

Claim: � is transitive.
Proof : Let there by given f, g, h with f � g and g � h. Observe that

f, g, h have to be distinct because � is irreflexive and asymmetric. Distinguish
among the following cases:

Case 1: f � g because of clause (i). That is, there exists a set A such that

f, g ∈ A and f ∈ C (A) while g /∈ C (A). If h ∈ A then g /∈ C (A) implies

h /∈ C (A) (by Monotonicity) and f � h follows (by clause (i)). If h /∈ A

consider D = A∪ {h} with f, g, h ∈ D. By Union, at least one of f (∈ C (A))
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and h (∈ C ({h})) is in C (D). But h ∈ C (D) would imply (by Monotonicity)

g ∈ C (D) and (by Sen’s α) g ∈ C (A), a contradiction. Hence h /∈ C (D) and

f ∈ C (D), implying f � h again.

Case 2: g � h because of clause (i). That is, there exists a set A such

that g, h ∈ A and g ∈ C (A) while h /∈ C (A). If f ∈ A we have f ∈ C (A)

by Monotonicity, and f � h follows. Otherwise, consider D = A ∪ {f} with
f, g, h ∈ D. By Union, at least one of f(∈ C ({f})) and g (∈ C (A)) is in

C (D). Yet, g ∈ C (D) implies f ∈ C (D) by Monotonicity. In both cases,

then, f ∈ C (D) while h /∈ C (D) (because h /∈ C (A)). Thus f � h.

Case 3: Both f � g and g � h hold (only) by clause (ii). In this case,

there exist two sets, B and E, f, g /∈ B and g, h /∈ E, and two elements d ∈ B
and t ∈ E such that (f � g) [d /∈ C (B ∪ {f}) and d ∈ C (B ∪ {g})] as well as
(g � h) [t /∈ C (E ∪ {g}) and t ∈ C (E ∪ {h})]. Consider D = B ∪E ∪ {g, h}.
As D = [B ∪ {g}] ∪ [E ∪ {h}], Union implies that d ∈ C (D) or t ∈ C (D).

However, t /∈ C (E ∪ {g}) rules out (by Sen’s α) the latter, and we have
d ∈ C (D). Hence we also have d ∈ C (B ∪ E ∪ {h}). (In particular, this also
means that f /∈ E, because d /∈ C (B ∪ {f}).) However, d /∈ C (B ∪ {f})
implies d /∈ C (B ∪ E ∪ {f}) and f � h follows (by clause (ii)). �

It is natural to define

Definition 1 For f, g ∈ F , f ∼ g if neither f � g nor g � f .

Lemma 7 : ∼ is an equivalence relation.

Proof: Because � is irreflexive, ∼ is reflexive. Symmetry follows from the
definition of ∼. Thus we only have to prove transitivity. Assume that f ∼ g,

g ∼ h. If f ∼ h doesn’t hold, we have a � relation between f and h, without
loss of generality, f � h. There are two possibilities to consider:

Case 1: f � h because of clause (i). That is, there exists a set A such

that f, h ∈ A and f ∈ C (A) while h /∈ C (A). If g ∈ A, then we either

have g ∈ C (A), in which case g � h (by definition of �), or g /∈ C (A),

which implies that f � g (again, by definition). In both cases we obtain a

contradiction.

22



Assume, then, that g /∈ A and consider B = A ∪ {g}. Observe that

h /∈ C (B) by Sen’s α. If f ∈ C (B), proceed as above (to show that f � g or

g � h must hold). If f /∈ C (B), then, by Union, we must have g ∈ C (B) (as

C ({g}) = {g}). But then g � f follows —again, a contradiction.

Case 2: f � h because of clause (ii). That is, there exists a set B such

that f, h /∈ B, and d such that d /∈ C (B ∪ {f}) and d ∈ C (B ∪ {h}). If
g /∈ B, we consider B ∪ {g}. If d ∈ C (B ∪ {g}), we have f � g, and if

d /∈ C (B ∪ {g}) —g � h follows (in both cases, by clause (ii) of the definition

of �) —a contradiction.
Consider, then, the sub-case in which g ∈ B. Define B′ = B\ {g} and

consider B′ ∪ {f, h}. If d /∈ C (B′ ∪ {f, h}), then, since d ∈ C (B′ ∪ {g, h})
(=C (B ∪ {h})) we get f � g (for the set B′ ∪ {h}). If, however, d ∈
C (B′ ∪ {f, h}) then, since d /∈ C (B′ ∪ {f, g}) (=C (B ∪ {f})) we get g � h

(for the set B′ ∪ {f}). Thus, in both cases we obtain a contradiction. �

We now define a binary relation P that is to be interpreted as “suffi ciently

more highly ranked than”:

Definition 2 For f, g ∈ F , fPg if g /∈ C ({f, g}).

Observe that, for f 6= g, g /∈ C ({f, g}) means that C ({f, g}) = {f}. As
stated, the definition also applies to the case f = g, in which case it means

that P is irreflexive. Evidently, P is also asymmetric.

Considering A = {f, g}, we observe that fPg implies f � g. The converse

need not hold, as the difference in ranking between f and g might only be

revealed in the presence of other alternatives. We also define

Definition 3 For f, g ∈ F , fIg if neither fPg nor gPf .

Note that I is symmetric by its definition, and that it is reflexive because

P is irreflexive. However, I need not be transitive. We now wish to show that

the relation P and its associated I satisfy Luce’s axioms for a semiorder (Luce,

1956). Specifically, using the notation of concatenation of binary relations, we
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wish to show that PIP ⊂ P and PPI ⊂ P .12 We first observe that both PI

and IP imply the relation �.

Lemma 8 : For all f, g, h if (fPg and gIh) or (fIg and gPh), then f � h.

Proof: If g = h, fPg means fPh and f � h follows. Otherwise, f, g, h

are distinct (f 6= g because P is irreflexive and f 6= h because fPg but hIg).

Assume first that fPg and gIh. Thus, C ({f, g}) = {f} and C ({g, h}) =

{g, h}. Considering B = {g}, we have g ∈ C (B ∪ {h}) but g /∈ C (B ∪ {f})
and f � h follows by clause (ii) of the definition of �.
Assume next that fIg and gPh. Then, C ({f, g}) = {f, g} andC ({g, h}) =

{g}. Setting B = {g} again, we have f ∈ C (B ∪ {f}) but h /∈ C (B ∪ {h})
and f � h follows from Lemma 5. �

We now proceed to prove that (P, I) satisfy Luce’s axioms.

Lemma 9 : For all f, g, h, d ∈ F , if fPg, gIh, and hPd, then fPd.

Proof: Assume that fPg, gIh, and hPd. Because each of the relations
P, IP, PI was proven to imply �, and because � is irreflexive and transitive,
we have f � g, f � h, g � d, and h � d. Also, d = f would imply dPIh and

d � h while we have h � d. Hence we conclude that among f, g, h, d we have

at least three distinct elements, where the only possible equality is g = h. We

allow for this possibility in the sequel (with the obvious notational convention

that {g, h} = {g} if g = h).

We have C ({f, g}) = {f}, C ({g, h}) = {g, h}, C ({h, d}) = {h} and need
to show that C ({f, d}) = {f}. Assume, to the contrary, that d ∈ C ({f, d}).
Since g ∈ C ({g, h}) we can apply Union to conclude that at least one of d, g
is in C ({f, g, h, d}). However, d ∈ C ({f, g, h, d}) would imply d ∈ C ({h, d})
and g ∈ C ({f, g, h, d}) would imply g ∈ C ({f, g}), both of which are known
to be false. �
12The concatenation is defined by an existential quantifier: xR1R2y if there exists a z

such that xR1zR2y. It is used inductively, so that, for example,xPIPy means that there
are z, w such that xPz , zIw , wPy
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Observe that Lemma 9 also proves that P is transitive (corresponding to

the case g = h in the proof above). We now turn to the second axiom:

Lemma 10 : For all f, g, h, d, if fPg, gPh, and hId, then fPd.

Proof: Assume that fPg, gPh, and hId. As above, we have f � g, g � h,

f � h. Further, as P is transitive, we have fPh and thus both fPId and

gPId so that f, g � d. It follows that among f, g, h, d we have at least three

distinct elements, where the only possible equality is h = d. However, in this

case we have fPd (because fPh), so we may turn to the case in which all four

elements are distinct.

We have C ({f, g}) = {f}, C ({g, h}) = {g}, C ({h, d}) = {h, d} and need
to show that C ({f, d}) = {f}. Assume, to the contrary, that d ∈ C ({f, d}).
Consider B = {f} and observe that g /∈ C (B ∪ {g}) while d ∈ C (B ∪ {d})
and thus, by Lemma 5, d � g. However, we already established that g � d, a

contradiction. �

Next, we wish to show that the semiorder P captures all the relevant

information in the choice function C. To this end, we remind the reader that,

if P is a semiorder, then Q∗ ≡ PI∪IP is the strict part of a weak order. That
is, Q∗ is irreflexive, asymmetric, and transitive, where Q0 ≡ (Q∗ ∪Q∗−1)

c is an

equivalence relation. Thus, Q = Q∗ ∪Q0 is the weak order whose asymmetric

part is Q∗ and whose symmetric part is Q0. It is well known (and easy to

verify) that, with the above definitions, QP ⊂ P and PQ ⊂ P .

We wish to show that (Q∗, Q0) = (�,∼), that is, that the relations (Q∗, Q0),

defined in terms of the binary relation P , are identical to the relations (�,∼)

defined in terms of the choice function C.

Lemma 11 : (Q∗, Q0) = (�,∼).

Proof: We have already shown in Lemma 8 that Q∗ ⊂ �, which also
means that ∼ ⊂ Q0 and we now wish to show the converse, that is, that f � g

implies fQ∗g (and thus fQ0g would imply f ∼ g). Assume, then, that f � g.

We have two possibilities to consider, depending on the clause of the definition

of � by which the relation holds:
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Case 1: There exists a set A such that f, g ∈ A, f ∈ C (A) and g /∈ C (A).

By Lemma 3, there exists h ∈ A such that g /∈ C ({g, h}) (or else the
lemma implies that g ∈ C (A)). Thus, hPg. If, however, f /∈ C ({f, h}) then
f ∈ C (A) would be impossible. Thus, f ∈ C ({f, h}). This leaves us with two
possibilities: fIh (if C ({f, h}) = {f, h}), in which case fIPg and fQ∗g, or
fPh (if C ({f, h}) = {f}), which implies fPg and fQ∗g.
Case 2: There exists a set B such that f, g /∈ B, and h ∈ C (B ∪ {g}) (in

particular, h ∈ B) while h /∈ C (B ∪ {f}). By Lemma 4, h ∈ C (B ∪ {g})
means that, for each d ∈ B∪{g}, we cannot have dPh. In particular, we have
gIh or hPg. By the same lemma, h /∈ C (B ∪ {f}) implies that there exists
an element t in B ∪ {f} such that tPh, and since this element isn’t in B, it
has to be f . That is, fPh . Thus we have fPIg (in case gIh) or fPPg, hence

fPg (in case hPg). In both cases, fQ∗g follows. �

6.1.2 Proof of Theorem 1 and of Proposition 1

Proof of Theorem 1:
The “only if” has been proved above: we started with a choice function

C that satisfied A1-A4, and defined a semiorder P associated with it, namely

fPg iff g /∈ C ({f, g}). Lemma 4 has shown that, for every set A, and every
element f ∈ A, f ∈ C (A) iff f ∈ C ({f, g}) for every g ∈ A, that is, iff for
every g ∈ A it is not the case that gPf .
To see the converse, assume that P is a semiorder and that C (A) =

{ f ∈ A |@g ∈ A, gPf } for every A. It is immediate that C satisfies Sen’s

α, because, if B ⊂ A, an element that isn’t P -dominated by any element in A

can’t be P -dominated by any element in B.

To see that Union holds, assume that f ∈ C(A) and g ∈ C (B). Let h be

a Q-maximizer in A and let d be a Q-maximizer in B. Assume w.l.o.g. that

hQd. We know that ¬hPf and hence f is not P -dominated by any element
in B (because tPf for some t ∈ B would imply dPf and then hPf). Thus, f

is not P -dominated by any element in A or in B and f ∈ C(A ∪ B) follows.

(Naturally, g ∈ C(A ∪B) follows from dQh.)

We now turn to prove Monotonicity. Assume that f, g ∈ A, g ∈ C (A) and
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f � g. We argue that fQ∗g (where Q∗ = PI ∪ IP is the strict part of the

weak order defined by the semiorder P ). Again, there are two possibilities to

consider:

Case 1: f � g because of clause (i). That is, there exists a set D such

that f, g ∈ D and f ∈ C (D) while g /∈ C (D). In this case there exists h ∈ D
such that hPg (as g is P -dominated in D) but we do not have hPf (as f is

P -undominated in D). Then we have fPh (in which case fPhPg and then

fPg) or fIh (and fIhPg). In both cases, fQ∗g.

Case 2: f � g because of clause (ii). That is, there exists a set B such

that f, g /∈ B, and h such that h /∈ C (B ∪ {f}) and h ∈ C (B ∪ {g}). The
latter implies that we have neither gPh nor dPh for any d ∈ B. However,

h /∈ C (B ∪ {f}) implies that there exists a t ∈ C (B ∪ {f}) such that tPh,
and this t can only be f . Thus, fPh. Since ¬gPh we have either hPg and
then fPhPg implying fPg, or hIg, and then fPhIg. In both cases, fQ∗g.

Given that fQ∗g and g ∈ C (A), we argue that f ∈ C (A) has to hold.

Indeed, if not, there exists h ∈ A such that hPf . But in this case we would
have hPfQ∗g and therefore hPg, contrary to g ∈ C (A). Thus f isn’t P -

dominated by any element in A, and f ∈ C(A) follows.

Finally, we note that C satisfies Continuity: let there be given an increasing

chain (Aτ )τ∈Υ with f ∈ C (Aτ ) for all τ ∈ Υ. If f ∈ C(∪τ∈ΥAτ ) does not hold,

there exists g ∈ ∪τ∈ΥAτ that satisfies gPf . But then there exists τ ∈ Υ with

g ∈ Aτ contradicting f ∈ C (Aτ ). �

Proof of Proposition 1: Observe that, when F is finite, A4 (Continuity)
isn’t needed for the proof of suffi ciency in Theorem 1. Hence, A1-A3 imply that

C is defined by a semiorder P . We now need only cite a representation result

(see Luce, 1956, and Beja and Gilboa, 1992), saying that P is a semiorder on

a finite set F iff there exist a function u : F → R and ∆ ≥ 0 such that, for all

f, g,

gPf ⇔ u (g)− u (f) > ∆.

�
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6.1.3 Proof of Proposition 2

We begin with the “if”part. Let there be an interval order P on F . Define

C by C (A) = { f ∈ A | @g ∈ A, gPf }. Observe, first, that C (A) 6= ∅ for

all A 6= ∅, because P cannot have cycles. To see that it satisfies Sen’s α, let

f ∈ B ⊂ A and f ∈ C(A). Clearly, there exists no g ∈ B ⊂ A such that

gPf and thus f ∈ C(B). Next, consider Union. Assume that f ∈ C(A) and

g ∈ C (B). We need to show that f ∈ C (A ∪B) or g ∈ C (A ∪B). If this

is not the case, then f /∈ C (A ∪B) implies that there exists h ∈ C (A ∪B)

such that hPf . As f ∈ C(A) it has to be the case that h ∈ B\A. Similarly,
g /∈ C (A ∪B) implies that there exists d ∈ A\B such that dPg. Further, we

know that ¬hPg (by optimality of g in B) and (similarly) ¬dPf . If gPh then,
by transitivity of P , gPf , and with dPg we also get dPf , a contradiction.

Hence ¬hPg and ¬gPh, that is gIh. However, dPgIhPf implies dPf , again,
a contradiction. Finally, C satisfies Continuity as in the case of a semiorder

(and, indeed, as in the case of a function C that is defined by selecting P -

undominated elements for any binary relation P ).

As for the “only if” part, assume that C satisfies Sen’s α, Union, and

Continuity. Define fPg by g /∈ C ({f, g}). By Lemma 4, because C satisfies

Sen’s α, Union, and Continuity,

C (A) = { f ∈ A | ∀g ∈ A, f ∈ C ({f, g})}

holds for all A. Given that, for g ∈ A, f ∈ C ({f, g}) means ¬gPf , we have
C (A) = { f ∈ A |@g ∈ A, gPf }.
We now wish to prove that this relation P is indeed an interval order. The

fact that it is irreflexive is obvious from the definition. We thus need to show

that PIP ⊂ P . Let there be given f, g, h, d such that fPgIhPd and we need

to show that fPd. Assume not. Consider A = {f, d} and B = {g, h}. Because
¬fPd, we have d ∈ C (A). We know that gIh so that g ∈ C (B). Hence at

least one of d or g is in C (A ∪B) = C ({f, g, h, d}). But d ∈ C ({f, g, h, d})
is ruled out by hPd and g ∈ C ({f, g, h, d}) —by fPg. �
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6.1.4 Independence of the Axioms

We wish to verify that axioms A1-A4 are independent. We first note that the

first two are not implied by the others.

Remark 1 A1 does not follow from A2, A3, and A4.

Proof : Let F = {f, g, h} and define C by C ({f, g}) = C ({f, h}) = {f};
C ({g, h}) = {g}; C ({f, g, h}) = {f, g, h}. To see that C satisfies A2, observe
that, apart from C (F ), C picks the maximizer of a strict order P with fPgPh.

As for A3, C defines the relation f � g, g � h, f � h (and no other pairs are

in �). The function C clearly satisfies Monotonicity with respect to this �.
However, A1 doesn’t hold as C (F ) consists of all elements, including those

that are excluded from C (A) for subsets A ⊂ F . �

Remark 2 A2 does not follow from A1, A3, and A4.

Proof : Let F = {f, g, h} and define C by C (A) = C (A) for all A $ F ;

C ({f, g, h}) = {f}. A1 is satisfied, because, for all B ⊂ F with |B| ≤ 2,

we have C (B) = B. As for A3, we first have to identify the � relation. We
have f � g and f � h because C ({f, g, h}) = {f} (and clause (i) of the
definition of �). There are no other � rankings (again, because no element is
excluded from C (B) for |B| ≤ 2), and Monotonicity is satisfied. Yet, Union

isn’t satisfied as can be verified by considering g ∈ C ({f, g}) and h ∈ C ({h}).
�

The case of a choice function that satisfies A1, A2, and A4 but not A3 is

characterized in Proposition 2.

Finally, we note that

Remark 3 A4 does not follow from A1, A2, and A3.

Proof: Let F = [0, 2), and define C by

C (A) =

{
f ∈ A

∣∣∣∣ f > sup
g∈A

g − 1

}
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Thus, for finite sets A, C (A) is the P -undominated elements according to the

semiorder gPf iff g − f ≥ 1. It can be easily seen that C satisfies A1-A3.

However, A4 fails: define Aτ = [0, τ) for τ ∈ [0, 2). Note that 1 ∈ C (Aτ ) but

1 /∈ C (∪τ<2Aτ ). �

6.1.5 The Definition of �

The definition we use is

Definition: For f, g ∈ F , f � g if one of the following holds:

(i) there exists a set A such that f, g ∈ A, f ∈ C (A) and g /∈ C (A);

(ii) there exists a set B such that f, g /∈ B, and h ∈ B such that h /∈
C (B ∪ {f}) and h ∈ C (B ∪ {g}) .

It is worthwhile to note that both clauses of the definition are needed

to capture the intended meaning of the relation. Specifically, if we have a

representation of C by (u,∆), and we wish to have f � g whenever u (f) >

u (g), both clauses are needed.

To see that (i) is needed, assume that there is a strict transitive order P

such that C selects only its (unique) maximizer. Specifically, we may have F =

{f, g, h} with C ({f, g, h}) = C ({f, g}) = C ({f, h}) = {f} ; and C ({g, h}) =

{g}. This would correspond to the representation u (f) = 4;u (g) = 2;u (h) =

0 and ∆ = 0. If we use only clause (ii) of the definition, we have only f � h.

More generally, if there is a strict order on F and C picks its unique maximizer

(in each set A), clause (ii) would fail to capture the ranking between any two

consecutive alternatives.

Conversely, if we only use clause (i), we may have F = {f, g, h} with
C ({f, g, h}) = C ({f, g}) = {f, g}, C ({g, h}) = {g, h} and C ({f, h}) = {f}.
Clause (i) would capture f � h and g � h but not f � g. This would

correspond to the representation u (f) = 4;u (g) = 2;u (h) = 0 and ∆ = 3.

Thus, the presence of h reveals that f is more highly ranked than g, but clause

(i) of the definition fails to capture that.
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6.2 Database-Related Analysis

6.2.1 Proof of Corollary 3

Given Lemma 1, we have a representation of%D by UD (·) ≡
∑

x∈X D(x)v(·, x).

The representation (Gilboa and Schmeidler, 2003) allows shifting every “col-

umn”, (v(·, x)), by an additive constant. Given axiom P5, we know that, for

each x, there exists g ∈ F such that v(g, x) = maxf∈F v(f, x). This means

that we can add −v(g, x) to all the values v(·, x) and obtain a representation

in which v(f, x) ≤ 0 for all x, f . We then define

p (x|f) = exp (v(f, x)) ∈ (0, 1]

and the ranking given by
∑

x∈X D(x)v(·, x) is equivalent to that given by

L (f |D) =
∏

{x∈X |D(x)>0}

[p (x|f)]D(x) .

�

6.2.2 Proof of Theorem 2

We use the matrix (v(f, x))f∈F,x∈X obtained in the proof of Corollary 3, so that

maxf v(f, x) = 0 for all x and %D is represented by UD (·) ≡
∑

x∈X D(x)v(·, x)

for all D. We wish to show that, under the additional axioms P6-P8, there

exists ∆ ≥ 0 such that, for every D ∈ D, and every f, g ∈ F ,

UD (f)− UD (g) > ∆ ⇒ fPDg (5)

UD (f)− UD (g) < ∆ ⇒ ¬fPDg

When this is the case, we say that (UD,∆) is a pseudo-representation of

PD. Observe that, in this case, for every D ∈ D, and every A ⊂ F , because

CD (A) = { f ∈ A |@g ∈ A, gPDf }
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we will have

UD (f) > sup
g∈A

UD (g)−∆ ⇒

@g ∈ A, gPDf ⇒ f ∈ CD (A)

UD (f) < sup
g∈A

UD (g)−∆ ⇒

∃g ∈ A, gPDf ⇒ f /∈ CD (A)

or, equivalently, for γ = exp (−∆) ≤ 1,

L (f |D) > γ sup
g∈A

L (g|D) ⇒ f ∈ CD (A)

L (f |D) < γ sup
g∈A

L (g|D) ⇒ f /∈ CD (A)

To find such a ∆ ≥ 0 for which (UD,∆) is a pseudo-representation of PD
(for all D), we proceed in three steps: first, we fix two theories, f, g, and a

finite support X0 ⊂ X, and show that we can find ∆ ≥ 0 such that (5) holds

for all D with support in X0. The main assumption that yields this result is

P6, which guarantees that we can linearly separate the databases D for which

fPDg from the other databases (for which ¬fPDg). We then show that the
same ∆ ≥ 0 can serve as the threshold for all finite supports. Axiom P8 will

guarantee that this ∆ is unique. Finally, we show that this ∆ is the same for

all pairs of theories, employing P8 again.

Lemma 12 Fix f, g ∈ F and a finite subset X0 ⊂ X such that, for some

x, y ∈ X0, f �Dx g and g �Dy f . There exists ∆ ≥ 0 such that, for all D ∈ D
with suppD ⊂ X0, (5) holds.

Proof: Consider
P = {D ∈ D | fPDg}

Let vx = v(f, x) − v(g, x) (for all x ∈ X) so that f %D g iff vD ≥ 0 (where

vD =
∑

x vxD (x)) . We claim that, for all D ∈ P and D′ /∈ P , we have

vD ≥ vD′. To see this, first prove:

Claim 1 For every natural M (> 0) and every ε > 0 there exists D+ such

that D+ (x) > M for all x ∈ X0 and 0 ≤ vD+ < ε. Similarly, there exists D−

such that D− (x) > M for all x ∈ X0 and −ε < vD− ≤ 0.
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Proof: By our assumption onX0, there exist x, y such that vx > 0 > vy. We

argue that, for each such pair x, y there is D+
x,y with suppD

+
x,y = {x, y} instead

of suppDx,y (x) = {x, y} and 0 ≤ vD+
x,y < ε

M |X0|2
. Indeed, if vx/vy ∈ Q,

then there is such D+
x,y with vD+

x,y = 0. If, however, vx/vy /∈ Q, the set
{ kvx − lvy | k, l ≥ 0} is dense in R, so that we can find D+

x,y with 0 < vD+
x,y <

ε
M |X0|2

. We can then define

D+ = M
∑

{x,y∈X0 | vx>0>vy }

D+
x,y

and observe that D+ (x) > M for all x ∈ X0 and 0 ≤ vD+ < ε. The proof for

D− is symmetric. �
We prove the lemma by negation. Assume that D ∈ P and D′ /∈ P satisfy

vD < vD′. ConsiderM > D (x) , D′ (x) for all x ∈ X0 and ε = (vD′ − vD) /3.

Let D− be the database provided by the claim. Consider D′ + D− ∈ D.
Because vD− ≤ 0 we have g %D− f and, with D′ /∈ P , by P6, D′ + D− /∈ P .
Next, consider D̃ = D′+D−−D. Notice that D−−D ≥ 0 so that D̃ ∈ D (that
is, D̃ (x) ≥ 0 for all x ∈ X0). We have vD̃ = vD′ + vD− − vD > vD− + 3ε >

2ε > 0. Hence f %D̃ g. Given that D ∈ P , P6 implies D + D̃ ∈ P . However,
D + D̃ = D′ +D− which was shown not to be in P —a contradiction.

To complete the proof of the lemma, observe that 0 ∈ P c. On the other

hand, P7 implies that P 6= ∅. Thus, neither P nor P c is empty. Define

∆+ = inf
D∈P

[UD (f)− UD (g)]

∆− = sup
D/∈P

[UD (f)− UD (g)]

we have shown that ∆+ ≥ ∆− where ∆− ≥ 0 follows from 0 ∈ P c. In case

∆+ = ∆−, set ∆ = ∆+ = ∆−, and it is the unique value satisfying (5).

Otherwise, any value ∆ ∈ [∆−,∆+] would do. �

Lemma 13 Fix f, g ∈ F . There exists a unique ∆ ≥ 0 such that, for all

D ∈ D (5) holds.

Proof: Given P8, there exists X0 = {x, y} such that, vx ≡ v(f, x) −
v(g, x) > 0 > v(f, y) − v(g, y) ≡ vy and vx/vy /∈ Q. Apply Lemma 12 to X0.
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Observe that

∆+ = inf
D∈P

[D (x) vx −D (y) vy]

∆− = sup
D/∈P

[D (x) vx −D (y) vy]

However, because vx/vy /∈ Q, {D (x) vx −D (y) vy}D is dense in R. Hence
∆ = ∆+ and ∆ that satisfies (5) for X0 = {x, y} is unique.
Consider any other finite X1 ⊂ X and apply Lemma 12 to X ′ = X0 ∪X1.

There exists a ∆ ≥ 0 that satisfies (5) for X ′ and it has to be the same ∆ as

found above. Finally, given an arbitrary D ∈ D, we define X1 to be its support

and obtain the result. �

Lemma 14 There exists ∆ ≥ 0 such that (UD,∆) is a pseudo-representation

of PD for all D ∈ D.

Proof: Lemma 13 shows that for every f, g there exists a unique ∆fg ≥ 0

such that (UD,∆fg) satisfies (5) for (f, g). We will first show that for all f, g, h

we have ∆fg = ∆fh.

Let there be given distinct f, g, h. Assume that ∆fg = ∆fh does not

hold. Without loss of generality, suppose that ∆fg > ∆fh. We wish to find a

database D such that

(I) UD (f)− UD (g) ≥ UD (f)− UD (h)

(II) UD (f)− UD (h) > ∆fh

(III) UD (f)− UD (g) < ∆fg

If D satisfies these three inequalities, (I) will imply that UD (g) ≤ UD (h), that

is, h %D g; (II) —that fPDh; but (III) will imply that ¬fPDg, and this will
be a contradiction to the monotonicity of PD with respect to %D.
To see that such D indeed exists, assume, w.l.o.g., that UD (f) = 0, and

consider R2 with a generic point (ξ, η) interpreted as (UD (g) , UD (h)). Con-

sider the set {
(ξ, η) ∈ R2 | ξ ≤ η, η < −∆fh, ξ > −∆fg

}
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i.e., the half-open triangle that is bounded (from below and to the right) by

the main diagonal (including the edge) ξ ≤ η, from above by η = −∆fh and

from the left by ξ = −∆fg. However, P8 guarantees that (UD (g) , UD (h))D∈D
is dense in R2.13 Thus we can find D ∈ D that yields (UD (g) , UD (h)) in this

set, contradicting the assumption ∆fg > ∆fh.

Next we wish to show by similar reasoning that, for all f, g, h, ∆fg = ∆hg.

If not, say ∆fg > ∆hg, we can find a D with

(I) UD (f)− UD (g) ≥ UD (h)− UD (g)

(II) UD (h)− UD (g) > ∆hg

(III) UD (f)− UD (g) < ∆fg

and thus f %D h; hPDg; but ¬fPDg —again, a contradiction.
As a result, for any f, g, f ′, g′ we have ∆fg = ∆fg′ = ∆f ′g′ . And thus there

is a single ∆ ≥ 0 such that (UD,∆) satisfies (5) for all (f, g). �
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